Skip to main content
Log in

Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)1.15TiS2 superlattice for large and fast Na+ storage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Alloying-type metal sulfides with high sodiation activity and theoretical capacity are promising anode materials for high energy density sodium ion batteries. However, the large volume change and the migratory and aggregation behavior of metal atoms will cause severe capacity decay during the charge/discharge process. Herein, a robust and conductive TiS2 framework is integrated with a high-capacity SbS layer to construct a single phase (SbS)1.15TiS2 superlattice for both high-capacity and fast Na+ storage. The metallic TiS2 sublayer with high electron activity acts as a robust and conductive skeleton to buffer the volume expansion caused by conversion and alloying reaction between Na+ and SbS sublayer. Hence, high capacity and high rate capability can be synergistically realized in a single phase (SbS)1.15TiS2 superlattice. The novel (SbS)1.15TiS2 anode has a high charge capacity of 618 mAh g−1 at 0.2 C and superior rate performance and cycling stability (205 mAh g−1 at 35 C after 2,000 cycles). Furthermore, in situ and ex situ characterizations are applied to get an insight into the multi-step reaction mechanism. The integrity of robust Na-Ti-S skeleton during (dis)charge process can be confirmed. This superlattice construction idea to integrate the Na+-active unit and electron-active unit would provide a new avenue for exploring high-performance anode materials for advanced sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian Z, Zou Y, Liu G, Wang Y, Yin J, Ming J, Alshareef HN. Adv Sci, 2022, 9: 2201207

    Article  CAS  Google Scholar 

  2. Peng J, Zhang W, Liu Q, Wang J, Chou S, Liu H, Dou S. Adv Mater, 2022, 34: 2108384

    Article  CAS  Google Scholar 

  3. Olsson E, Yu J, Zhang H, Cheng H, Cai Q. Adv Energy Mater, 2022, 12: 2200662

    Article  CAS  Google Scholar 

  4. Peng B, Lv Z, Xu S, Pan J, Zhao W, Dong C, Huang F. Adv Mater, 2022, 34: 2200863

    Article  CAS  Google Scholar 

  5. Peng B, Xu S, Lv Z, Zhang S, Gao Y, Lin T, Huang F. Adv Energy Mater, 2023, 13: 2203187

    Article  CAS  Google Scholar 

  6. Zheng J, Li W, Liu X, Zhang J, Feng X, Chen W. Energy Environ Mater, 2022, doi: https://doi.org/10.1002/eem2.12422

  7. Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Angew Chem Int Ed, 2022, 61: e202206770

    Article  CAS  Google Scholar 

  8. Lin X, Dong C, Zhao S, Peng B, Zhou C, Wang R, Huang F. Adv Sci, 2022, 9: 2202026

    Article  CAS  Google Scholar 

  9. Zheng C, Ji D, Yao Q, Bai Z, Zhu Y, Nie C, Liu D, Wang N, Yang J, Dou S. Angew Chem Int Ed, 2023, 62: e202214258

    Article  CAS  Google Scholar 

  10. Li Q, Cao Z, Cheng H, Zhang J, Ma Z, Wahyudi W, Cavallo L, Sun Q, Ming J. ACS Mater Lett, 2022, 4: 2469–2479

    Article  CAS  Google Scholar 

  11. Dong W, Li R, Xu J, Tang Y, Huang F. Cell Rep Phys Sci, 2022, 3: 101109

    Article  CAS  Google Scholar 

  12. Zheng SM, Tian YR, Liu YX, Wang S, Hu CQ, Wang B, Wang KM. Rare Met, 2021, 40: 272–289

    Article  CAS  Google Scholar 

  13. Xu Z, Park J, Yoon G, Kim H, Kang K. Small Methods, 2019, 3: 1800227

    Article  CAS  Google Scholar 

  14. Li Y, Hu J, Wang Z, Yang K, Huang W, Cao B, Li Z, Zhang W, Pan F. ACS Appl Mater Interfaces, 2019, 11: 24164–24171

    Article  CAS  PubMed  Google Scholar 

  15. Hu Z, Tai Z, Liu Q, Wang S, Jin H, Wang S, Lai W, Chen M, Li L, Chen L, Tao Z, Chou S. Adv Energy Mater, 2019, 9: 1803210

    Article  Google Scholar 

  16. Hu P, Wang B, Xiao D, Aifantis K. Nano Energy, 2019, 63: 103820

    Article  CAS  Google Scholar 

  17. Wang J, Luo N, Wu J, Huang S, Yu L, Wei M. J Mater Chem A, 2019, 7: 3691–3696

    Article  CAS  Google Scholar 

  18. Zhao Y, Yang D, He T, Li J, Wei L, Wang D, Wang Y, Wang X, Chen G, Wei Y. Chem Eng J, 2021, 421: 129715

    Article  CAS  Google Scholar 

  19. Wu Y, Jiang Y, Shi J, Gu L, Yu Y. Small, 2017, 13: 1700129

    Article  Google Scholar 

  20. Diao Z, Wang Y, Zhao D, Zhang X, Mao SS, Shen S. Chem Eng J, 2021, 417: 127928

    Article  CAS  Google Scholar 

  21. Nava-Avendaño J, Morales-García A, Ponrouch A, Rousse G, Frontera C, Senguttuvan P, Tarascon JM, Dompablo MEA, Palacín MR. J Mater Chem A, 2015, 3: 22280–22286

    Article  Google Scholar 

  22. Fu S, Ni J, Xu Y, Zhang Q, Li L. Nano Lett, 2016, 16: 4544–4551

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, Fan L, Chen S, Su S, Ma R, Han X, Lu B. Energy Technol, 2019, 7: 1900634

    Article  CAS  Google Scholar 

  24. Xue P, Wang N, Fang Z, Lu Z, Xu X, Wang L, Du Y, Ren X, Bai Z, Dou S, Yu G. Nano Lett, 2019, 19: 1998–2004

    Article  CAS  PubMed  Google Scholar 

  25. Ma P, Fang D, Liu Y, Shang Y, Shi Y, Yang HY. Adv Sci, 2021, 8: 2003185

    Article  CAS  Google Scholar 

  26. Ma H, Li J, Yang J, Wang N, Liu Z, Wang T, Su D, Wang C, Wang G. Chem Asian J, 2021, 16: 3774–3780

    Article  CAS  PubMed  Google Scholar 

  27. Zhan W, Zhu M, Lan J, Wang H, Yuan H, Yang X, Sui G. Chem Eng J, 2021, 408: 128007

    Article  CAS  Google Scholar 

  28. Yao S, Cui J, Deng Y, Chong WG, Wu J, Ihsan-Ul-Haq M, Mai YW, Kim JK. Energy Storage Mater, 2019, 20: 36–45

    Article  Google Scholar 

  29. Pathak A. J Appl Res Technol, 2019, 17: 302–312

    Article  Google Scholar 

  30. Li D, Yuan Z, Li J, Cao J, Xu H, Li G, Milinevsky G, Wang L, Han W. J Power Sources, 2022, 546: 231875

    Article  CAS  Google Scholar 

  31. Fang Y, Yu XY, Lou XWD. Angew Chem Int Ed, 2018, 57: 9859–9863

    Article  CAS  Google Scholar 

  32. Chen KT, Chong S, Yuan L, Yang YC, Tuan HY. Energy Storage Mater, 2021, 39: 239–249

    Article  Google Scholar 

  33. Yu JH, Jo CH, Kim HJ, Myung ST. Energy Storage Mater, 2021, 38: 241–248

    Article  Google Scholar 

  34. Wang H, Song X, Lv M, Jin S, Xu J, Kong X, Li X, Liu Z, Chang X, Sun W, Zheng J, Li X. Small, 2022, 18: 2104293

    Article  CAS  Google Scholar 

  35. Lan K, Liu L, Zhang JY, Wang R, Zu L, Lv Z, Wei Q, Zhao D. J Am Chem Soc, 2021, 143: 14097–14105

    Article  CAS  PubMed  Google Scholar 

  36. Bergh W, Lokupitiya HN, Vest NA, Reid B, Guldin S, Stefik M. Adv Funct Mater, 2021, 31: 2007826

    Article  Google Scholar 

  37. Eshetu GG, Diemant T, Hekmatfar M, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S. Nano Energy, 2019, 55: 327–340

    Article  CAS  Google Scholar 

  38. Sun B, Zhang Q, Zhang C, Xu W, Wang J, Yuan G, Lv W, Li X, Yang N. Adv Energy Mater, 2021, 11: 2100082

    Article  CAS  Google Scholar 

  39. Xie F, Zhang L, Gu Q, Chao D, Jaroniec M, Qiao SZ. Nano Energy, 2019, 60: 591–599

    Article  CAS  Google Scholar 

  40. Liu H, He Y, Cao K, Wang S, Jiang Y, Liu X, Huang K, Jing Q, Jiao L. Small, 2021, 17: 2008133

    Article  CAS  Google Scholar 

  41. Ding C, Huang L, Lan J, Yu Y, Zhong W, Yang X. Small, 2020, 16: 1906883

    Article  CAS  Google Scholar 

  42. Ramireddy T, Xing T, Rahman MM, Chen Y, Dutercq Q, Gunzelmann D, Glushenkov AM. J Mater Chem A, 2015, 3: 5572–5584

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA0210600) and the National Natural Science Foundation of China (51922103 and 51972326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Huang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

>Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1699_MOESM1_ESM.pdf

Unlocking Efficient Energy Storage via Regulating Ion and Electron-Active Subunits: An (SbS)1.15TiS2 Superlattice for Large and Fast Na+ Storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, B., Cai, T., Zhang, S. et al. Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)1.15TiS2 superlattice for large and fast Na+ storage. Sci. China Chem. 67, 336–342 (2024). https://doi.org/10.1007/s11426-023-1699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1699-x

Navigation