Skip to main content
Log in

Dynamic investigation of oxygen defects on transition metal-based electrocatalysts: formation, characterization, and mechanism during alkaline oxygen evolution reaction

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Oxygen defects play a critical role in the electrocatalytic oxygen evolution reaction (OER). Therefore, in-depth understanding the structure-activity-mechanism relationship of these defects is the key to design efficient OER electrocatalysts. This relationship needs to be understood dynamically due to the potential for irreversible phase transitions during OER. Consequently, significant efforts have been devoted to study the dynamic evolution of oxygen defects to shed light on the OER mechanism. This review critically examines and analyzes the dynamic processes occurring at oxygen defect sites during OER, including defect formation and defect evolution mechanisms, along with the advanced characterization techniques needed to understand these processes. This review aims to provide a comprehensive understanding of high-efficiency electrocatalysts, with a particular emphasis on the importance of in situ monitoring the dynamic evolution of oxygen defects, providing a new perspective towards efficient OER electrocatalyst design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow J, Kopp RJ, Portney PR. Science, 2003, 302: 1528–1531

    Article  PubMed  Google Scholar 

  2. Chu S, Majumdar A. Nature, 2012, 488: 294–303

    Article  CAS  PubMed  Google Scholar 

  3. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Chem Soc Rev, 2015, 44: 2060–2086

    Article  CAS  PubMed  Google Scholar 

  4. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM. Nat Mater, 2016, 16: 57–69

    Article  PubMed  Google Scholar 

  5. Zhang M, Zhang K, Ai X, Liang X, Zhang Q, Chen H, Zou X. Chin J Catal, 2022, 43: 2987–3018

    Article  CAS  Google Scholar 

  6. Gao X, Li X, Yu Y, Kou Z, Wang P, Liu X, Zhang J, He J, Mu S, Wang J. Nano Energy, 2021, 85: 105961

    Article  CAS  Google Scholar 

  7. Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Adv Mater, 2017, 29: 1606459

    Article  Google Scholar 

  8. Xu Q, Zhang J, Zhang H, Zhang L, Chen L, Hu Y, Jiang H, Li C. Energy Environ Sci, 2021, 14: 5228–5259

    Article  CAS  Google Scholar 

  9. Wu T, Han MY, Xu ZJ. ACS Nano, 2022, 16: 8531–8539

    Article  CAS  PubMed  Google Scholar 

  10. Jia Y, Jiang K, Wang H, Yao X. Chem, 2019, 5: 1371–1397

    Article  CAS  Google Scholar 

  11. Wang Q, Lei Y, Wang D, Li Y. Energy Environ Sci, 2019, 12: 1730–1750

    Article  CAS  Google Scholar 

  12. Jiao S, Fu X, Wang S, Zhao Y. Energy Environ Sci, 2021, 14: 1722–1770

    Article  CAS  Google Scholar 

  13. Zhang L, Jia Y, Gao G, Yan X, Chen N, Chen J, Soo MT, Wood B, Yang D, Du A, Yao X. Chem, 2018, 4: 285–297

    Article  CAS  Google Scholar 

  14. Zhuang L, Jia Y, He T, Du A, Yan X, Ge L, Zhu Z, Yao X. Nano Res, 2018, 11: 3509–3518

    Article  CAS  Google Scholar 

  15. Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z. Adv Mater, 2017, 29: 1606793

    Article  Google Scholar 

  16. Wang X, Zhuang L, Jia Y, Liu H, Yan X, Zhang L, Yang D, Zhu Z, Yao X. Angew Chem Int Ed, 2018, 57: 16421–16425

    Article  CAS  Google Scholar 

  17. Zhuang L, Jia Y, Liu H, Wang X, Hocking RK, Liu H, Chen J, Ge L, Zhang L, Li M, Dong CL, Huang YC, Shen S, Yang D, Zhu Z, Yao X. Adv Mater, 2019, 31: 1805581

    Article  Google Scholar 

  18. Lyu X, Jia Y, Mao X, Li D, Li G, Zhuang L, Wang X, Yang D, Wang Q, Du A, Yao X. Adv Mater, 2020, 32: 2003493

    Article  CAS  Google Scholar 

  19. Zhuang L, Jia Y, Liu H, Li Z, Li M, Zhang L, Wang X, Yang D, Zhu Z, Yao X. Angew Chem Int Ed, 2020, 59: 14664–14670

    Article  CAS  Google Scholar 

  20. Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X. Adv Mater, 2016, 28: 9532–9538

    Article  CAS  PubMed  Google Scholar 

  21. Jia Y, Zhang L, Zhuang L, Liu H, Yan X, Wang X, Liu J, Wang J, Zheng Y, Xiao Z, Taran E, Chen J, Yang D, Zhu Z, Wang S, Dai L, Yao X. Nat Catal, 2019, 2: 688–695

    Article  CAS  Google Scholar 

  22. Zhang L, Fischer JMTA, Jia Y, Yan X, Xu W, Wang X, Chen J, Yang D, Liu H, Zhuang L, Hankel M, Searles DJ, Huang K, Feng S, Brown CL, Yao X. J Am Chem Soc, 2018, 140: 10757–10763

    Article  CAS  PubMed  Google Scholar 

  23. Zhu K, Shi F, Zhu X, Yang W. Nano Energy, 2020, 73: 104761

    Article  CAS  Google Scholar 

  24. Yan X, Zhuang L, Zhu Z, Yao X. Nanoscale, 2021, 13: 3327–3345

    Article  CAS  PubMed  Google Scholar 

  25. Xie C, Yan D, Chen W, Zou Y, Chen R, Zang S, Wang Y, Yao X, Wang S. Mater Today, 2019, 31: 47–68

    Article  CAS  Google Scholar 

  26. Yan X, Jia Y, Yao X. Small Struct, 2020, 2: 2000067

    Article  Google Scholar 

  27. Zhao S, Tan C, He CT, An P, Xie F, Jiang S, Zhu Y, Wu KH, Zhang B, Li H, Zhang J, Chen Y, Liu S, Dong J, Tang Z. Nat Energy, 2020, 5: 881–890

    Article  CAS  Google Scholar 

  28. Luo R, Qian Z, Xing L, Du C, Yin G, Zhao S, Du L. Adv Funct Mater, 2021, 31: 2102918

    Article  CAS  Google Scholar 

  29. Liu X, Meng J, Zhu J, Huang M, Wen B, Guo R, Mai L. Adv Mater, 2021, 33: 2007344

    Article  CAS  Google Scholar 

  30. Kang J, Qiu X, Hu Q, Zhong J, Gao X, Huang R, Wan C, Liu LM, Duan X, Guo L. Nat Catal, 2021, 4: 1050–1058

    Article  CAS  Google Scholar 

  31. Zhao JW, Zhang H, Li CF, Zhou X, Wu JQ, Zeng F, Zhang J, Li GR. Energy Environ Sci, 2022, 15: 3912–3922

    Article  CAS  Google Scholar 

  32. Wu X, Song X, Tan H, Kang Y, Zhao Z, Jin S, Chang X. Mater Today Energy, 2022, 26: 101008

    Article  CAS  Google Scholar 

  33. Ji Q, Kong Y, Tan H, Duan H, Li N, Tang B, Wang Y, Feng S, Lv L, Wang C, Hu F, Zhang W, Cai L, Yan W. ACS Catal, 2022, 12: 4318–4326

    Article  CAS  Google Scholar 

  34. Peng W, Deshmukh A, Chen N, Lv Z, Zhao S, Li J, Yan B, Gao X, Shang L, Gong Y, Wu L, Chen M, Zhang T, Gou H. ACS Catal, 2022, 12: 3743–3751

    Article  CAS  Google Scholar 

  35. Fan K, Zou H, Lu Y, Chen H, Li F, Liu J, Sun L, Tong L, Toney MF, Sui M, Yu J. ACS Nano, 2018, 12: 12369–12379

    Article  CAS  PubMed  Google Scholar 

  36. Lai SCS, Macpherson JV, Unwin PR. MRS Bull, 2012, 37: 668–674

    Article  CAS  Google Scholar 

  37. Deng J, Nellist MR, Stevens MB, Dette C, Wang Y, Boettcher SW. Nano Lett, 2017, 17: 6922–6926

    Article  CAS  PubMed  Google Scholar 

  38. Feng H, Xu Z, Ren L, Liu C, Zhuang J, Hu Z, Xu X, Chen J, Wang J, Hao W, Du Y, Dou SX. ACS Catal, 2018, 8: 4288–4293

    Article  CAS  Google Scholar 

  39. Ali-Löytty H, Louie MW, Singh MR, Li L, Sanchez Casalongue HG, Ogasawara H, Crumlin EJ, Liu Z, Bell AT, Nilsson A, Friebel D. J Phys Chem C, 2016, 120: 2247–2253

    Article  Google Scholar 

  40. Song S, Zhou J, Su X, Wang Y, Li J, Zhang L, Xiao G, Guan C, Liu R, Chen S, Lin HJ, Zhang S, Wang JQ. Energy Environ Sci, 2018, 11: 2945–2953

    Article  CAS  Google Scholar 

  41. Yeo BS, Bell AT. J Am Chem Soc, 2011, 133: 5587–5593

    Article  CAS  PubMed  Google Scholar 

  42. Xiao Z, Huang YC, Dong CL, Xie C, Liu Z, Du S, Chen W, Yan D, Tao L, Shu Z, Zhang G, Duan H, Wang Y, Zou Y, Chen R, Wang S. J Am Chem Soc, 2020, 142: 12087–12095

    Article  CAS  PubMed  Google Scholar 

  43. Liang H, Cao Z, Xia C, Ming F, Zhang W, Emwas AH, Cavallo L, Alshareef HN. CCS Chem, 2021, 3: 1553–1561

    Article  CAS  Google Scholar 

  44. Liu X, Jing S, Ban C, Wang K, Feng Y, Wang C, Ding J, Zhang B, Zhou K, Gan L, Zhou X. Nano Energy, 2022, 98: 107328

    Article  CAS  Google Scholar 

  45. Mabayoje O, Shoola A, Wygant BR, Mullins CB. ACS Energy Lett, 2016, 1: 195–201

    Article  CAS  Google Scholar 

  46. Chen W, Wang H, Li Y, Liu Y, Sun J, Lee S, Lee JS, Cui Y. ACS Cent Sci, 2015, 1: 244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin S. ACS Energy Lett, 2017, 2: 1937–1938

    Article  CAS  Google Scholar 

  48. Duan Y, Lee JY, Xi S, Sun Y, Ge J, Ong SJH, Chen Y, Dou S, Meng F, Diao C, Fisher AC, Wang X, Scherer GG, Grimaud A, Xu ZJ. Angew Chem Int Ed, 2021, 60: 7418–7425

    Article  CAS  Google Scholar 

  49. Li J, Lian R, Wang J, He S, Jiang SP, Rui Z. Electrochim Acta, 2020, 331: 135395

    Article  CAS  Google Scholar 

  50. Song CW, Suh H, Bak J, Bae HB, Chung SY. Chem, 2019, 5: 3243–3259

    Article  CAS  Google Scholar 

  51. Zhao Y, Zheng L, Shi R, Zhang S, Bian X, Wu F, Cao X, Waterhouse GIN, Zhang T. Adv Energy Mater, 2020, 10: 2002199

    Article  CAS  Google Scholar 

  52. Peng L, Yang N, Yang Y, Wang Q, Xie X, Sun-Waterhouse D, Shang L, Zhang T, Waterhouse GIN. Angew Chem Int Ed, 2021, 60: 24612–24619

    Article  CAS  Google Scholar 

  53. He Z, Zhang J, Gong Z, Lei H, Zhou D, Zhang N, Mai W, Zhao S, Chen Y. Nat Commun, 2022, 13: 2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li S, Sharma N, Yu C, Zhang Y, Wan G, Fu R, Huang H, Sun X, Lee SJ, Lee JS, Nordlund D, Pianetta P, Zhao K, Liu Y, Qiu J. Adv Mater, 2021, 33: 2006147

    Article  CAS  Google Scholar 

  55. Chen L, Zhang Y, Li D, Wang Y, Duan C. J Mater Chem A, 2018, 6: 18378–18383

    Article  CAS  Google Scholar 

  56. Wang Y, Tao S, Lin H, Wang G, Zhao K, Cai R, Tao K, Zhang C, Sun M, Hu J, Huang B, Yang S. Nano Energy, 2021, 81: 105606

    Article  CAS  Google Scholar 

  57. Zheng J, Peng X, Xu Z, Gong J, Wang Z. ACS Catal, 2022, 12: 10245–10254

    Article  CAS  Google Scholar 

  58. Peng L, Shah SSA, Wei Z. Chin J Catal, 2018, 39: 1575–1593

    Article  CAS  Google Scholar 

  59. Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S. Adv Mater, 2017, 29: 1704681

    Article  Google Scholar 

  60. Grimaud A, Hong WT, Shao-Horn Y, Tarascon JM. Nat Mater, 2016, 15: 121–126

    Article  CAS  PubMed  Google Scholar 

  61. Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee YL, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y. Nat Chem, 2017, 9: 457–465

    Article  CAS  PubMed  Google Scholar 

  62. Han B, Stoerzinger KA, Tileli V, Gamalski AD, Stach EA, Shao-Horn Y. Nat Mater, 2017, 16: 121–126

    Article  CAS  PubMed  Google Scholar 

  63. Ferreira de Araújo J, Dionigi F, Merzdorf T, Oh H, Strasser P. Angew Chem Int Ed, 2021, 60: 14981–14988

    Article  Google Scholar 

  64. Huang ZF, Xi S, Song J, Dou S, Li X, Du Y, Diao C, Xu ZJ, Wang X. Nat Commun, 2021, 12: 3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu M, Zheng Y, Hu Y, Huang B, Ji D, Sun M, Li J, Peng Y, Si R, Xi P, Yan CH. Sci Adv, 2022, 8: eabq3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mefford JT, Rong X, Abakumov AM, Hardin WG, Dai S, Kolpak AM, Johnston KP, Stevenson KJ. Nat Commun, 2016, 7: 11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang X, Huang K, Yuan L, Xi S, Yan W, Geng Z, Cong Y, Sun Y, Tan H, Wu X, Li L, Feng S. J Phys Chem Lett, 2018, 9: 4146–4154

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, Li X, Chu X, Cao R, Qian J, Cong Y, Huang K, Wang J, Redshaw C, Sarangi R, Li G, Feng S. Adv Funct Mater, 2021, 31: 2006439

    Article  CAS  Google Scholar 

  69. Czioska S, Boubnov A, Escalera-López D, Geppert J, Zagalskaya A, Röse P, Saraçi E, Alexandrov V, Krewer U, Cherevko S, Grunwaldt JD. ACS Catal, 2021, 11: 10043–10057

    Article  CAS  Google Scholar 

  70. Mierwaldt D, Mildner S, Arrigo R, Knop-Gericke A, Franke E, Blumenstein A, Hoffmann J, Jooss C. Catalysts, 2014, 4: 129–145

    Article  Google Scholar 

  71. Wang HY, Hung SF, Chen HY, Chan TS, Chen HM, Liu B. J Am Chem Soc, 2016, 138: 36–39

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Liu J, Zhang B, Cheng F, Ruan Y, Ji X, Xu K, Chen C, Miao L, Jiang J. Nano Energy, 2018, 53: 144–151

    Article  CAS  Google Scholar 

  73. Huang J, Chen J, Yao T, He J, Jiang S, Sun Z, Liu Q, Cheng W, Hu F, Jiang Y, Pan Z, Wei S. Angew Chem Int Ed, 2015, 54: 8722–8727

    Article  CAS  Google Scholar 

  74. Zhou D, Xiong X, Cai Z, Han N, Jia Y, Xie Q, Duan X, Xie T, Zheng X, Sun X, Duan X. Small Methods, 2018, 2: 1800083

    Article  Google Scholar 

  75. Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. ACS Energy Lett, 2018, 3: 1515–1520

    Article  CAS  Google Scholar 

  76. Xiong X, Cai Z, Zhou D, Zhang G, Zhang Q, Jia Y, Duan X, Xie Q, Lai S, Xie T, Li Y, Sun X, Duan X. Sci China Mater, 2018, 61: 939–947

    Article  CAS  Google Scholar 

  77. Ji P, Luo X, Chen D, Jin H, Pu Z, Zeng W, He J, Bai H, Liao Y, Mu S. ACS Sustain Chem Eng, 2020, 8: 17851–17859

    Article  CAS  Google Scholar 

  78. Tao HB, Fang L, Chen J, Yang HB, Gao J, Miao J, Chen S, Liu B. J Am Chem Soc, 2016, 138: 9978–9985

    Article  CAS  PubMed  Google Scholar 

  79. Papageorgiou AC, Beglitis NS, Pang CL, Teobaldi G, Cabailh G, Chen Q, Fisher AJ, Hofer WA, Thornton G. Proc Natl Acad Sci USA, 2010, 107: 2391–2396

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li J, Li J, Ren J, Hong H, Liu D, Liu L, Wang D. Nano-Micro Lett, 2022, 14: 148

    Article  CAS  Google Scholar 

  81. Swaminathan J, Subbiah R, Singaram V. ACS Catal, 2016, 6: 2222–2229

    Article  CAS  Google Scholar 

  82. Han X, Lin Z, He X, Cui L, Lu D. Int J Hydrogen Energy, 2020, 45: 26989–26999

    Article  CAS  Google Scholar 

  83. Li L, Feng X, Nie Y, Chen S, Shi F, Xiong K, Ding W, Qi X, Hu J, Wei Z, Wan LJ, Xia M. ACS Catal, 2015, 5: 4825–4832

    Article  CAS  Google Scholar 

  84. Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, Kong B, Cai WB, Yang Z, Zheng G. Adv Energy Mater, 2014, 4: 1400696

    Article  Google Scholar 

  85. Zhao Z, Shao Q, Xue J, Huang B, Niu Z, Gu H, Huang X, Lang J. Nano Res, 2022, 15: 310–316

    Article  CAS  Google Scholar 

  86. Xu Q, Jiang H, Duan X, Jiang Z, Hu Y, Boettcher SW, Zhang W, Guo S, Li C. Nano Lett, 2021, 21: 492–499

    Article  CAS  PubMed  Google Scholar 

  87. Zhang B, Jiang K, Wang H, Hu S. Nano Lett, 2019, 19: 530–537

    Article  CAS  PubMed  Google Scholar 

  88. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y. Energy Environ Sci, 2015, 8: 1404–1427

    Article  CAS  Google Scholar 

  89. Sabatier P. Ber Dtsch Chem Ges, 1911, 44: 1984–2001

    Article  CAS  Google Scholar 

  90. Matsumoto Y, Yoneyama H, Tamura H. J Electroanal Chem Interfacial Electrochem, 1977, 79: 319–326

    Article  CAS  Google Scholar 

  91. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. Science, 2011, 334: 1383–1385

    Article  CAS  PubMed  Google Scholar 

  92. Wei C, Feng Z, Scherer GG, Barber J, Shao-Horn Y, Xu ZJ. Adv Mater, 2017, 29: 1606800

    Article  Google Scholar 

  93. Hu J, Li S, Chu J, Niu S, Wang J, Du Y, Li Z, Han X, Xu P. ACS Catal, 2019, 9: 10705–10711

    Article  CAS  Google Scholar 

  94. Kim J, Yin X, Tsao KC, Fang S, Yang H. J Am Chem Soc, 2014, 136: 14646–14649

    Article  CAS  PubMed  Google Scholar 

  95. Hu Z, Wu H, Haverkort MW, Hsieh HH, Lin HJ, Lorenz T, Baier J, Reichl A, Bonn I, Felser C, Tanaka A, Chen CT, Tjeng LH. Phys Rev Lett, 2004, 92: 207402

    Article  CAS  PubMed  Google Scholar 

  96. Haverkort MW, Hu Z, Cezar JC, Burnus T, Hartmann H, Reuther M, Zobel C, Lorenz T, Tanaka A, Brookes NB, Hsieh HH, Lin HJ, Chen CT, Tjeng LH. Phys Rev Lett, 2006, 97: 176405

    Article  CAS  PubMed  Google Scholar 

  97. Shao Z, Zhu Q, Sun Y, Zhang Y, Jiang Y, Deng S, Zhang W, Huang K, Feng S. Adv Mater, 2022, 34: 2110172

    Article  CAS  Google Scholar 

  98. Lee WH, Han MH, Ko YJ, Min BK, Chae KH, Oh HS. Nat Commun, 2022, 13: 605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ding M, Cutsail III GE, Aravena D, Amoza M, Rouzières M, Dechambenoit P, Losovyj Y, Pink M, Ruiz E, Clérac R, Smith JM. Chem Sci, 2016, 7: 6132–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang XQ, Wang H, Sun X. Adv Energy Mater, 2018, 8: 1701694

    Article  Google Scholar 

  101. Kuznetsov DA, Han B, Yu Y, Rao RR, Hwang J, Román-Leshkov Y, Shao-Horn Y. Joule, 2018, 2: 225–244

    Article  CAS  Google Scholar 

  102. Zhang N, Chai Y. Energy Environ Sci, 2021, 14: 4647–4671

    Article  CAS  Google Scholar 

  103. Wang C, Zhai P, Xia M, Liu W, Gao J, Sun L, Hou J. Adv Mater, 2022, 35: 2209307

    Article  Google Scholar 

  104. Zhang N, Feng X, Rao D, Deng X, Cai L, Qiu B, Long R, Xiong Y, Lu Y, Chai Y. Nat Commun, 2020, 11: 4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST) of China through the Key Project of Research & Development (2021YFF0500502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Yao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wu, Q., Sherrell, P. et al. Dynamic investigation of oxygen defects on transition metal-based electrocatalysts: formation, characterization, and mechanism during alkaline oxygen evolution reaction. Sci. China Chem. 66, 2221–2237 (2023). https://doi.org/10.1007/s11426-023-1649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1649-y

Navigation