Skip to main content
Log in

Redox-neutral ipso/ortho alkenylcyanation of (hetero)arylboronic acid enabled by 1,4-rhodium migration and fragmentation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A mild, chemoselective, redox-neutral ipso/ortho alkenylcyanation of arylboronic acids with homopropargylic malononitriles via 1,4-rhodium migration and fragmentation is reported. A variety of 2-vinyl arylnitriles are obtained in good yields (51 examples, ava. 69% yields) through this strategy, which is characterized by its broad substrate scope, great functional group tolerance, and mild conditions. Mechanism studies indicate that the fragmentation is temperature dependent. The primary asymmetric exploration for the non-fragmentation product already shows promising results. The separation of the two cyano groups of homopropargylic malononitriles results in the formation of aromatic nitrile and aliphatic nitrile in one molecule, which enables the further transformations of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hedouin G, Hazra S, Gallou F, Handa S. ACS Catal, 2022, 12: 4918–4937

    Article  CAS  Google Scholar 

  2. Corpas J, Mauleón P, Arrayás RG, Carretero JC. ACS Catal, 2021, 11: 7513–7551

    Article  CAS  Google Scholar 

  3. West MJ, Fyfe JWB, Vantourout JC, Watson AJB. Chem Rev, 2019, 119: 12491–12523

    Article  CAS  PubMed  Google Scholar 

  4. Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature, 2018, 563: 100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyaura N, Suzuki A. Chem Rev, 1995, 95: 2457–2483

    Article  CAS  Google Scholar 

  6. Wang H, Jing C, Noble A, Aggarwal VK. Angew Chem Int Ed, 2020, 59: 16859–16872

    Article  CAS  Google Scholar 

  7. Roscales S, Csáky AG. Chem Soc Rev, 2020, 49: 5159–5177

    Article  CAS  PubMed  Google Scholar 

  8. Wu P, Givskov M, Nielsen TE. Chem Rev, 2019, 119: 11245–11290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu C, Falck JR. Adv Synth Catal, 2014, 356: 2395–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oguma K, Miura M, Satoh T, Nomura M. J Am Chem Soc, 2000, 122: 10464–10465

    Article  CAS  Google Scholar 

  11. Hayashi T, Inoue K, Taniguchi N, Ogasawara M. J Am Chem Soc, 2001, 123: 9918–9919

    Article  CAS  PubMed  Google Scholar 

  12. Kong W-, Finger LH, Oliveira JCA, Ackermann L. Angew Chem Int Ed, 2019, 58: 6342–6346

    Article  CAS  Google Scholar 

  13. Xu S, Chen K, Chen H, Yao J, Zhu X. Chem Eur J, 2014, 20: 16442–16447

    Article  CAS  PubMed  Google Scholar 

  14. Karthikeyan J, Haridharan R, Cheng CH. Angew Chem Int Ed, 2012, 51: 12343–12347

    Article  CAS  Google Scholar 

  15. Fukutani T, Hirano K, Satoh T, Miura M. J Org Chem, 2011, 76: 2867–2874

    Article  CAS  PubMed  Google Scholar 

  16. Fukutani T, Hirano K, Satoh T, Miura M. Org Lett, 2010, 11: 5198–5201

    Article  Google Scholar 

  17. Selmani A, Darses S. Org Lett, 2020, 22: 2681–2686

    Article  CAS  PubMed  Google Scholar 

  18. Groves A, Sun J, Parke HRI, Callingham M, Argent SP, Taylor LJ, Lam HW. Chem Sci, 2020, 11: 2759–2764

    Article  PubMed  PubMed Central  Google Scholar 

  19. Selmani A, Darses S. Org Lett, 2019, 21: 8122–8126

    Article  CAS  PubMed  Google Scholar 

  20. O’Brien L, Karad SN, Lewis W, Lam HW. Chem Commun, 2019, 55: 11366–11369

    Article  Google Scholar 

  21. Wang JX, Tan YX, Liao WW, Tian P, Lin GQ, Zhao Q. Synlett, 2018, 29: 1223–1228

    Article  CAS  Google Scholar 

  22. Claraz A, Serpier F, Darses S. ACS Catal, 2017, 7: 3410–3413

    Article  CAS  Google Scholar 

  23. Partridge BM, Solana González J, Lam HW. Angew Chem Int Ed, 2014, 53: 6523–6527

    Article  CAS  Google Scholar 

  24. Shintani R, Isobe S, Takeda M, Hayashi T. Angew Chem Int Ed, 2010, 49: 3795–3798

    Article  CAS  Google Scholar 

  25. Miura T, Sasaki T, Nakazawa H, Murakami M. J Am Chem Soc, 2005, 127: 1390–1391

    Article  CAS  PubMed  Google Scholar 

  26. Chen S, Liu ZS, Yang T, Hua Y, Zhou Z, Cheng HG, Zhou Q. Angew Chem Int Ed, 2018, 57: 7161–7165

    Article  CAS  Google Scholar 

  27. Shi G, Shao C, Ma X, Gu Y, Zhang Y. ACS Catal, 2018, 8: 3775–3779

    Article  CAS  Google Scholar 

  28. Chen S, Wang P, Cheng HG, Yang C, Zhou Q. Chem Sci, 2019, 10: 8384–8389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang P, Chen S, Zhou Z, Cheng HG, Zhou Q. Org Lett, 2019, 21: 3323–3327

    Article  CAS  PubMed  Google Scholar 

  30. Mills LR, Graham JM, Patel P, Rousseaux SAL. J Am Chem Soc, 2019, 141: 19257–19262

    Article  CAS  PubMed  Google Scholar 

  31. Malapit CA, Reeves JT, Busacca CA, Howell AR, Senanayake CH. Angew Chem Int Ed, 2016, 55: 326–330

    Article  CAS  Google Scholar 

  32. Reeves JT, Malapit CA, Buono FG, Sidhu KP, Marsini MA, Sader CA, Fandrick KR, Busacca CA, Senanayake CH. J Am Chem Soc, 2015, 137: 9481–9488

    Article  CAS  PubMed  Google Scholar 

  33. Chen ZH, Sun RZ, Yao F, Hu XD, Xiang LX, Cong H, Liu WB. J Am Chem Soc, 2022, 144: 4776–4782

    Article  CAS  PubMed  Google Scholar 

  34. Hu XD, Chen ZH, Zhao J, Sun RZ, Zhang H, Qi X, Liu WB. J Am Chem Soc, 2021, 143: 3734–3740

    Article  CAS  PubMed  Google Scholar 

  35. Lu Z, Hu XD, Zhang H, Zhang XW, Cai J, Usman M, Cong H, Liu WB. J Am Chem Soc, 2020, 142: 7328–7333

    Article  CAS  PubMed  Google Scholar 

  36. Malapit CA, Caldwell DR, Luvaga IK, Reeves JT, Volchkov I, Gonnella NC, Han ZS, Busacca CA, Howell AR, Senanayake CH. Angew Chem Int Ed, 2017, 56: 6999–7002

    Article  CAS  Google Scholar 

  37. Zhang X, Xie X, Liu Y. Chem Sci, 2016, 7: 5815–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang J, Chen X, Wang Z. Tetrahedron Lett, 2015, 56: 5673–5675

    Article  CAS  Google Scholar 

  39. Korenaga T, Ko A, Uotani K, Tanaka Y, Sakai T. Angew Chem Int Ed, 2011, 50: 10703–10707

    Article  CAS  Google Scholar 

  40. Ueura K, Miyamura S, Satoh T, Miura M. J Organomet Chem, 2006, 691: 2821–2826

    Article  CAS  Google Scholar 

  41. Lautens M, Roy A, Fukuoka K, Fagnou K, Martín-Matute B. J Am Chem Soc, 2001, 123: 5358–5359

    Article  CAS  PubMed  Google Scholar 

  42. Sasabe H, Kido J. Chem Mater, 2010, 23: 621–630

    Article  Google Scholar 

  43. Ueura K, Satoh T, Miura M. Org Lett, 2005, 7: 2229–2231

    Article  CAS  PubMed  Google Scholar 

  44. Li H, Zhang S, Yu X, Feng X, Yamamoto Y, Bao M. Chem Commun, 2019, 55: 1209–1212

    Article  CAS  Google Scholar 

  45. Choi K, Park H, Lee C. J Am Chem Soc, 2018, 140: 10407–10411

    Article  CAS  PubMed  Google Scholar 

  46. He ZT, Tian B, Fukui Y, Tong X, Tian P, Lin GQ. Angew Chem Int Ed, 2013, 52: 5314–5318

    Article  CAS  Google Scholar 

  47. Miura T, Shimada M, Murakami M. J Am Chem Soc, 2005, 127: 1094–1095

    Article  CAS  PubMed  Google Scholar 

  48. Shintani R, Tsurusaki A, Okamoto K, Hayashi T. Angew Chem Int Ed, 2005, 44: 3909–3912

    Article  CAS  Google Scholar 

  49. Miura T, Shimada M, Murakami M. Angew Chem Int Ed, 2005, 44: 7598–7600

    Article  CAS  Google Scholar 

  50. Fang X, Yu P, Prina Cerai G, Morandi B. Chem Eur J, 2016, 22: 15629–15633

    Article  CAS  PubMed  Google Scholar 

  51. Fang X, Yu P, Morandi B. Science, 2016, 351: 832–836

    Article  CAS  PubMed  Google Scholar 

  52. Chen C, Hou C, Chen P, Liu G. Chin J Chem, 2020, 38: 346–350

    Article  CAS  Google Scholar 

  53. Aikawa K, Maruyama K, Honda K, Mikami K. Org Lett, 2015, 17: 4882–4885

    Article  CAS  PubMed  Google Scholar 

  54. Katritzky AR, Pilarski B, Urogdi L. Synthesis, 1989, 1989(12): 949–950

    Article  Google Scholar 

  55. Lu X, Huang Y. Org Chem Front, 2021, 8: 3008–3013

    Article  CAS  Google Scholar 

  56. Zhang SS, Hu TJ, Li MY, Song YK, Yang XD, Feng CG, Lin GQ. Angew Chem Int Ed, 2019, 58: 3387–3391

    Article  CAS  Google Scholar 

  57. Liu N, Yao J, Yin L, Lu T, Tian Z, Dou X. ACS Catal, 2019, 9: 6857–6863

    Article  CAS  Google Scholar 

  58. Ming J, Shi Q, Hayashi T. Chem Sci, 2018, 9: 7700–7704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Partridge BM, Callingham M, Lewis W, Lam HW. Angew Chem Int Ed, 2017, 56: 7227–7232

    Article  CAS  Google Scholar 

  60. Callingham M, Partridge BM, Lewis W, Lam HW. Angew Chem Int Ed, 2017, 56: 16352–16356

    Article  CAS  Google Scholar 

  61. Ma S, Gu Z. Angew Chem Int Ed, 2005, 44: 7512–7517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971074), the Natural Science Foundation of Guangdong Province (2022A1515010660, 2021A1515220024), and Natural Science Foundation of GuangZhou (202102020982). We further thank Dr. H. Jiang for technical assiatance with IR, Prof. Daniel J. Weix for the discussion and helpful suggestions about this paper. Dr. Y. Zhao from Francool Technology (Shenzhen) Co. Ltd. is gratefully acknowledged for his help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbin Huang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The Supporting Information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1645_MOESM1_ESM.pdf

Redox-neutral ipso/ortho alkenylcyanation of (hetero)arylboronic acid enabled by 1,4-rhodium migration and fragmenta-tion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Xing, D., Jiang, H. et al. Redox-neutral ipso/ortho alkenylcyanation of (hetero)arylboronic acid enabled by 1,4-rhodium migration and fragmentation. Sci. China Chem. 66, 2283–2291 (2023). https://doi.org/10.1007/s11426-023-1645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1645-x

Navigation