Skip to main content
Log in

In-situ solid-phase anion-exchange full-color perovskite light-emitting devices

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Perovskite materials can realize the transition from green light to full-visible light spectrum by halogen anion exchange. Here, we designed an in-situ solid-phase anion-exchange method combined with inkjet printing to achieve full-color perovskite quantum dot light-emitting diodes (PeQD-LEDs). It was revealed that, in addition to the concentration, the anion-exchange rate was affected by the dielectric constant of the anion-exchange medium solvent. Without destroying the PeQD film, the higher the dielectric constant of the solvent, the faster the reaction rate. And at the same time, the solvent with higher dielectric constant will cause more defects, so the morphology, structure and properties of the perovskite films varied with solvents. The chain length of amine salts in anion-exchange medium solute also played a key role in the stability of electroluminescence spectra. The obtained blue-light devices had a maximum EQE of 4.6% at 481 nm and 6.6% at 493 nm prepared by spin-coating. For inkjet printing, instead of printing red-, green- and blue-luminescent materials, we printed halogen-containing materials to achieve the in-situ solid-phase anion-exchange with underlying PeQDs, and the inkjet-printed full-color device showed the current efficiency of 0.78 cd A−1. The method to achieve full-color devices by inkjet-printing halogen-containing materials can not only simplify the process, but also broaden the range of material selection, making the ink preparation more selective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovalenko MV, Protesescu L, Bodnarchuk MI. Science, 2017, 358: 745–750

    Article  CAS  PubMed  Google Scholar 

  2. Lin K, Wei Z. Sci China Chem, 2023, DOI: https://doi.org/10.1007/s11426-023-1568-0

  3. Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y. ACS Nano, 2015, 9: 4533–4542

    Article  CAS  PubMed  Google Scholar 

  4. Wang KH, Zhu BS, Yao JS, Yao HB. Sci China Chem, 2018, 61: 1047–1061

    Article  CAS  Google Scholar 

  5. Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu YJ, Ohisa S, Kido J. Nat Photon, 2018, 12: 681–687

    Article  CAS  Google Scholar 

  6. Dong Y, Wang YK, Yuan F, Johnston A, Liu Y, Ma D, Choi MJ, Chen B, Chekini M, Baek SW, Sagar LK, Fan J, Hou Y, Wu M, Lee S, Sun B, Hoogland S, Quintero-Bermudez R, Ebe H, Todorovic P, Dinic F, Li P, Kung HT, Saidaminov MI, Kumacheva E, Spiecker E, Liao LS, Voznyy O, Lu ZH, Sargent EH. Nat Nanotechnol, 2020, 15: 668–674

    Article  CAS  PubMed  Google Scholar 

  7. Zhu H, Tong G, Li J, Xu E, Tao X, Sheng Y, Tang J, Jiang Y. Adv Mater, 2022, 34: 2205092

    Article  CAS  Google Scholar 

  8. Kim JS, Heo JM, Park GS, Woo SJ, Cho C, Yun HJ, Kim DH, Park J, Lee SC, Park SH, Yoon E, Greenham NC, Lee TW. Nature, 2022, 611: 688–694

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Y, Sun C, Xu J, Li S, Cui M, Fu X, Liu Y, Liu Y, Wan H, Wei K, Zhou T, Zhang W, Yang Y, Yang J, Qin C, Gao S, Pan J, Liu Y, Hoogland S, Sargent EH, Chen J, Yuan M. Nature, 2022, 612: 679–684

    Article  CAS  PubMed  Google Scholar 

  10. Akkerman QA, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L. J Am Chem Soc, 2015, 137: 10276–10281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ, Kovalenko MV. Nano Lett, 2015, 15: 5635–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Y, Fang T, Liu G, Xiang H, Yang L, Li Y, Wang R, Yan D, Dong Y, Cai B, Zeng H. Adv Funct Mater, 2021, 31: 2106871

    Article  CAS  Google Scholar 

  13. Yoon YJ, Lee KT, Lee TK, Kim SH, Shin YS, Walker B, Park SY, Heo J, Lee J, Kwak SK, Kim GH, Kim JY. Joule, 2018, 2: 2105–2116

    Article  CAS  Google Scholar 

  14. Liu Y, Zhang Y. ACS Appl Mater Interfaces, 2021, 13: 47072–47080

    Article  CAS  PubMed  Google Scholar 

  15. Yao J, Wang L, Wang K, Yin Y, Yang J, Zhang Q, Yao H. Sci Bull, 2020, 65: 1150–1153

    Article  CAS  Google Scholar 

  16. Yoon YJ, Shin YS, Jang H, Son JG, Kim JW, Park CB, Yuk D, Seo J, Kim GH, Kim JY. Nano Lett, 2021, 21: 3473–3479

    Article  CAS  PubMed  Google Scholar 

  17. Kim J, Seo KW, Lee SJ, Kim K, Kim C, Lee JY. Adv Sci, 2022, 9: 2200073

    Article  CAS  Google Scholar 

  18. He S, Lee HB, Kumar N, Ko KJ, Song M, Kim W, Kang JW. Mater Today Chem, 2022, 26: 101012

    Article  CAS  Google Scholar 

  19. Ahn J, Lee YM, Jeon J, Bang J, Jeon S, Woo HK, Lee SY, Bae JH, Kim W, Choi YK, Kim SJ, Oh SJ. Adv Mater Technologies, 2022, 7: 2200031

    Article  CAS  Google Scholar 

  20. Hoshi K, Chiba T, Sato J, Hayashi Y, Takahashi Y, Ebe H, Ohisa S, Kido J. ACS Appl Mater Interfaces, 2018, 10: 24607–24612

    Article  CAS  PubMed  Google Scholar 

  21. Chiba T, Hoshi K, Pu YJ, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J. ACS Appl Mater Interfaces, 2017, 9: 18054–18060

    Article  CAS  PubMed  Google Scholar 

  22. Guo Y, Apergi S, Li N, Chen M, Yin C, Yuan Z, Gao F, Xie F, Brocks G, Tao S, Zhao N. Nat Commun, 2021, 12: 644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin K, Xing J, Quan LN, de Arquer FPG, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent EH, Xiong Q, Wei Z. Nature, 2018, 562: 245–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key R&D Plan of Guangdong Province (2022B0303010001), the National Natural Science Foundations of China (52073104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbiao Peng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, J., Wang, J. et al. In-situ solid-phase anion-exchange full-color perovskite light-emitting devices. Sci. China Chem. 66, 1707–1713 (2023). https://doi.org/10.1007/s11426-023-1631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1631-8

Keywords

Navigation