Skip to main content
Log in

Visible-light-driven thio-carboxylation of alkynes with CO2: facile synthesis of thiochromones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Difunctionalizing carboxylation of alkynes with CO2 is a sustainable and important strategy to generate valuable acrylate derivatives from both readily available starting materials. Such protocols, however, always suffer from the use of excess metallic reagents and transition metal residue. Herein, we report the first thio-carboxylation of alkynes with thiophenols and CO2, which is a visible-light-driven and transition metal-free process. In contrast to previous carboxylations of alkynes via two-electron activation of CO2, mechanistic and computational investigations suggest that the single-electron activation of CO2 is involved in the thio-carboxylation, rendering unique β-carboxylation. The following cyclizing acylation affords important thiochromones efficiently. Moreover, the one-pot method features mild reaction conditions (room temperature, 1 atmosphere of CO2), high chemo- and regio-selectivity, easy scalability and facile derivatization of products to bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Q, Wu L, Jackstell R, Beller M. Nat Commun, 2015, 6: 5933

    Article  PubMed  Google Scholar 

  2. Song QW, Zhou ZH, He LN. Green Chem, 2017, 19: 3707–3728

    Article  CAS  Google Scholar 

  3. Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Chem Soc Rev, 2019, 48: 4466–4514

    Article  CAS  PubMed  Google Scholar 

  4. Burkart MD, Hazari N, Tway CL, Zeitler EL. ACS Catal, 2019, 9: 7937–7956

    Article  CAS  Google Scholar 

  5. He M, Sun Y, Han B. Angew Chem Int Ed, 2022, 61: e202112835

    CAS  Google Scholar 

  6. Wang S, Xi C. Chem Soc Rev, 2019, 48: 382–404

    Article  CAS  PubMed  Google Scholar 

  7. Song L, Jiang YX, Zhang Z, Gui YY, Zhou XY, Yu DG. Chem Commun, 2020, 56: 8355–8367

    Article  Google Scholar 

  8. Tortajada A, JuliáHernández F, Börjesson M, Moragas T, Martin R. Angew Chem Int Ed, 2018, 57: 15948–15982

    Article  CAS  Google Scholar 

  9. Zhang Z, Ye JH, Ju T, Liao LL, Huang H, Gui YY, Zhou WJ, Yu DG. ACS Catal, 2020, 10: 10871–10885

    Article  CAS  Google Scholar 

  10. Zhang L, Li Z, Takimoto M, Hou Z. Chem Rec, 2020, 20: 494–512

    Article  PubMed  Google Scholar 

  11. Zhang Z, Ye JH, Wu DS, Zhou YQ, Yu DG. Chem Asian J, 2018, 13: 2292–2306

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Hou Z. Curr Opin Green Sustain Chem, 2017, 3: 17–21

    Article  Google Scholar 

  13. Wittcoff HA, Reuben BG., Plotkin JS. Industrial Organic Chemicals. 3rd ed. Hoboken: John Wiley & Sons, 2013

    Google Scholar 

  14. Fujihara T, Xu T, Semba K, Terao J, Tsuji Y. Angew Chem Int Ed, 2011, 50: 523–527

    Article  CAS  Google Scholar 

  15. Li S, Yuan W, Ma S. Angew Chem Int Ed, 2011, 50: 2578–2582

    Article  CAS  Google Scholar 

  16. Wang X, Nakajima M, Martin R. J Am Chem Soc, 2015, 137: 8924–8927

    Article  CAS  PubMed  Google Scholar 

  17. Shao P, Wang S, Du G, Xi C. RSC Adv, 2017, 7: 3534–3539

    Article  CAS  Google Scholar 

  18. Xiong W, Shi F, Cheng R, Zhu B, Wang L, Chen P, Lou H, Wu W, Qi C, Lei M, Jiang H. ACS Catal, 2020, 10: 7968–7978

    Article  CAS  Google Scholar 

  19. Wang MM, Lu SM, Paridala K, Li C. Chem Commun, 2021, 57: 1230–1233

    Article  CAS  Google Scholar 

  20. Shimizu K, Takimoto M, Sato Y, Mori M. Org Lett, 2005, 7: 195–197

    Article  CAS  PubMed  Google Scholar 

  21. Fujihara T, Tani Y, Semba K, Terao J, Tsuji Y. Angew Chem Int Ed, 2012, 51: 11487–11490

    Article  CAS  Google Scholar 

  22. Li S, Ma S. Adv Synth Catal, 2012, 354: 2387–2394

    Article  CAS  Google Scholar 

  23. Zhang L, Cheng J, Carry B, Hou Z. J Am Chem Soc, 2012, 134: 14314–14317

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Liu Y, Martin R. J Am Chem Soc, 2015, 137: 6476–6479

    Article  CAS  PubMed  Google Scholar 

  25. Nogi K, Fujihara T, Terao J, Tsuji Y. J Am Chem Soc, 2016, 138: 5547–5550

    Article  CAS  PubMed  Google Scholar 

  26. Stephenson CRJ, Yoon TP, MacMillan DWC. Visible Light Photocatalysis in Organic Chemistry. Hoboken: Wiley-VCH, 2018

    Book  Google Scholar 

  27. Liu Q, Wu LZ. Natl Sci Rev, 2017, 4: 359–380

    Article  CAS  Google Scholar 

  28. Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed, 2018, 57: 10034–10072

    Article  CAS  Google Scholar 

  29. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

  30. Buzzetti L, Crisenza GEM, Melchiorre P. Angew Chem Int Ed, 2019, 58: 3730–3747

    Article  CAS  Google Scholar 

  31. Sumida Y, Ohmiya H. Chem Soc Rev, 2021, 50: 6320–6332

    Article  CAS  PubMed  Google Scholar 

  32. Yeung CS. Angew Chem Int Ed, 2019, 58: 5492–5502

    Article  CAS  Google Scholar 

  33. Fan Z, Zhang Z, Xi C. ChemSusChem, 2020, 13: 6201–6218

    CAS  PubMed  Google Scholar 

  34. He X, Qiu LQ, Wang WJ, Chen KH, He LN. Green Chem, 2020, 22: 7301–7320

    Article  CAS  Google Scholar 

  35. Cai B, Cheo HW, Liu T, Wu J. Angew Chem Int Ed, 2021, 60: 18950–18980

    Article  CAS  Google Scholar 

  36. Ye JH, Ju T, Huang H, Liao LL, Yu DG. Acc Chem Res, 2021, 54: 2518–2531

    Article  CAS  PubMed  Google Scholar 

  37. Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q, Crespi S, König B, Martin R. Chem Eur J, 2019, 25: 9001–9005

    Article  CAS  PubMed  Google Scholar 

  38. Meng QY, Schirmer TE, Berger AL, Donabauer K, König B. J Am Chem Soc, 2019, 141: 11393–11397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song L, Fu D, Chen L, Jiang Y, Ye J, Zhu L, Lan Y, Fu Q, Yu D. Angew Chem Int Ed, 2020, 59: 21121–21128

    Article  CAS  Google Scholar 

  40. Schmalzbauer M, Svejstrup TD, Fricke F, Brandt P, Johansson MJ, Bergonzini G, König B. Chem, 2020, 6: 2658–2672

    Article  CAS  Google Scholar 

  41. Meng QY, Wang S, König B. Angew Chem Int Ed, 2017, 56: 13426–13430

    Article  CAS  Google Scholar 

  42. Shimomaki K, Murata K, Martin R, Iwasawa N. J Am Chem Soc, 2017, 139: 9467–9470

    Article  CAS  PubMed  Google Scholar 

  43. Liao LL, Cao GM, Ye JH, Sun GQ, Zhou WJ, Gui YY, Yan SS, Shen G, Yu DG. J Am Chem Soc, 2018, 140: 17338–17342

    Article  CAS  PubMed  Google Scholar 

  44. Zhu C, Zhang YF, Liu ZY, Zhou L, Liu H, Feng C. Chem Sci, 2019, 10: 6721–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan SS, Liu SH, Chen L, Bo ZY, Jing K, Gao TY, Yu B, Lan Y, Luo SP, Yu DG. Chem, 2021, 7: 3099–3113

    Article  CAS  Google Scholar 

  46. Ran CK, Niu YN, Song L, Wei MK, Cao YF, Luo SP, Yu YM, Liao LL, Yu DG. ACS Catal, 2022, 12: 18–24

    Article  CAS  Google Scholar 

  47. Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Chem Commun, 2017, 53: 3098–3101

    Article  CAS  Google Scholar 

  48. Yatham VR, Shen Y, Martin R. Angew Chem Int Ed, 2017, 56: 10915–10919

    Article  CAS  Google Scholar 

  49. Ye JH, Miao M, Huang H, Yan SS, Yin ZB, Zhou WJ, Yu DG. Angew Chem Int Ed, 2017, 56: 15416–15420

    Article  CAS  Google Scholar 

  50. Ju T, Fu Q, Ye J, Zhang Z, Liao L, Yan S, Tian X, Luo S, Li J, Yu D. Angew Chem Int Ed, 2018, 57: 13897–13901

    Article  CAS  Google Scholar 

  51. Hou J, Ee A, Cao H, Ong H, Xu J, Wu J. Angew Chem Int Ed, 2018, 57: 17220–17224

    Article  CAS  Google Scholar 

  52. Hou J, Ee A, Feng W, Xu JH, Zhao Y, Wu J. J Am Chem Soc, 2018, 140: 5257–5263

    Article  CAS  PubMed  Google Scholar 

  53. Fan X, Gong X, Ma M, Wang R, Walsh PJ. Nat Commun, 2018, 9: 4936

    Article  PubMed  PubMed Central  Google Scholar 

  54. Meng QY, Wang S, Huff GS, König B. J Am Chem Soc, 2018, 140: 3198–3201

    Article  CAS  PubMed  Google Scholar 

  55. Fu Q, Bo ZY, Ye JH, Ju T, Huang H, Liao LL, Yu DG. Nat Commun, 2019, 10: 3592

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhou WJ, Wang ZH, Liao LL, Jiang YX, Cao KG, Ju T, Li Y, Cao GM, Yu DG. Nat Commun, 2020, 11: 3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang H, Gao Y, Zhou C, Li G. J Am Chem Soc, 2020, 142: 8122–8129

    Article  CAS  PubMed  Google Scholar 

  58. Huang H, Ye JH, Zhu L, Ran CK, Miao M, Wang W, Chen H, Zhou WJ, Lan Y, Yu B, Yu DG. CCS Chem, 2021, 3: 1746–1756

    Article  CAS  Google Scholar 

  59. Liao LL, Cao GM, Jiang YX, Jin XH, Hu XL, Chruma JJ, Sun GQ, Gui YY, Yu DG. J Am Chem Soc, 2021, 143: 2812–2821

    Article  CAS  PubMed  Google Scholar 

  60. Ju T, Zhou YQ, Cao KG, Fu Q, Ye JH, Sun GQ, Liu XF, Chen L, Liao LL, Yu DG. Nat Catal, 2021, 4: 304–311

    Article  CAS  Google Scholar 

  61. Cao GM, Hu XL, Liao LL, Yan SS, Song L, Chruma JJ, Gong L, Yu DG. Nat Commun, 2021, 12: 3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Razdan RK, Bruni RJ, Mehta AC, Weinhardt KK, Papanastassiou ZB. J Med Chem, 1978, 21: 643–649

    Article  CAS  PubMed  Google Scholar 

  63. Dhanak D, Keenan RM, Burton G, Kaura A, Darcy MG, Shah DH, Ridgers LH, Breen A, Lavery P, Tew DG, West A. Bioorg Med Chem Lett, 1998, 8: 3677–3682

    Article  CAS  PubMed  Google Scholar 

  64. Dong J, Zhang Q, Meng Q, Wang Z, Li S, Cui J. Mini-Rev Med Chem, 2018, 18: 1714–1732

    Article  CAS  PubMed  Google Scholar 

  65. Hamama WS, Sofan MA, EL-Hawary II, Zoorob HH. Synth Commun, 2021, 51: 514–540

    Article  CAS  Google Scholar 

  66. Manjolinho F, Arndt M, Gooßen K, Gooßen LJ. ACS Catal, 2012, 2: 2014–2021

    Article  CAS  Google Scholar 

  67. Zhou C, Dubrovsky AV, Larock RC. J Org Chem, 2006, 71: 1626–1632

    Article  CAS  PubMed  Google Scholar 

  68. Nakazumi H, Ueyama T, Sonoda H, Kitao T. Bull Chem Soc Jpn, 1984, 57: 2323–2324

    Article  CAS  Google Scholar 

  69. Nakazumi H, Ueyama T, Endo T, Kitao T. Bull Chem Soc Jpn, 1983, 56: 1251–1252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22225106, 21822108, 21822303), the Sichuan Science and Technology Program (20CXTD0112), the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province (2021ZYD0063), the Fundamental Research Funds from Sichuan University (2020SCUNL102) and the Fundamental Research Funds for the Central Universities. We also thank Xiaoyan Wang from the Analysis and Testing Center of Sichuan University as well as Jing Li, Qin-Fang Zhang and Dongyan Deng from the College of Chemistry at Sichuan University for compound testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Heng Ye, Yu Lan or Da-Gang Yu.

Additional information

Conflict of interest

The authors declare the following competing financial interest(s): A Chinese Patent on this work has been applied with the number 202210655518.3.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, M., Zhu, L., Zhao, H. et al. Visible-light-driven thio-carboxylation of alkynes with CO2: facile synthesis of thiochromones. Sci. China Chem. 66, 1457–1466 (2023). https://doi.org/10.1007/s11426-022-1554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1554-x

Navigation