Skip to main content
Log in

Four unprecedented V14 clusters as highly efficient heterogeneous catalyst for CO2 fixation with epoxides and oxidation of sulfides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chemical fixation of carbon dioxide (CO2) is an energy-saving method for alleviating the greenhouse gas emissions, whereas it persists a challenge posed by the demand for efficient catalysts. Herein, four unprecedented examples of tetradecanuclear vanadium clusters, namely, [(C2H8N2)6(CH3O)8(CH3OH)2VIV10VV4O26] (V14−1), [(C3H10N2)6(CH3O)8(CH3OH)2VIV10VV4O26](V14−2), [(C6H14N2)6(CH3O)8(CH3OH)2VIV10VV4O26]·5H2O (V14−3) and [(C4H12N2O)4(C4H11N2O)2(CH3O)2VIV10VV4O28]·6H2O (V14−4), have been triumphantly designed and constructed under solvothermal conditions. Among them, compounds V14−1–4 are the first cases of tetradecanuclear vanadium clusters without the introduction of inorganic acid radical ions. Two main units [VIV10VV4O26]8+ and [VIV10VV4O28]4+ represent brand-new configurations of tetradecanuclear vanadium clusters. Given the fact that the presence of VIV/VV can potentially facilitate electron transfer and consequently expedite catalytic reactions, we explored the catalytic activities of these compounds. Remarkably, V14−1 was further used as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates under milder conditions (60 °C, 0.5 MPa) and exhibited higher catalytic activity. Also, the experimental results indicated that V14−1 could efficiently catalyze the sulfoxidation, which could fully convert most sulfides within 40 min at room temperature. Moreover, as a stable heterogeneous catalyst employed in CO2 fixation with epoxides and oxidation of sulfides, V14−1 could be consecutively used multiple cycles without losing its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirchner B, Intemann B. Nat Chem, 2016, 8: 401–402

    CAS  PubMed  Google Scholar 

  2. Alan Pounds J, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE. Nature, 2006, 439: 161–167

    PubMed  Google Scholar 

  3. Wei YS, Zhang M, Zou R, Xu Q. Chem Rev, 2020, 120: 12089–12174

    CAS  Google Scholar 

  4. Wang DG, Liang Z, Gao S, Qu C, Zou R. Coord Chem Rev, 2020, 404: 213093–213116

    CAS  Google Scholar 

  5. Aresta M, Dibenedetto A, Angelini A. Chem Rev, 2014, 114: 1709–1742

    CAS  PubMed  Google Scholar 

  6. Nguyen PTK, Nguyen HTD, Nguyen HN, Trickett CA, Ton QT, Gutiérrez-Puebla E, Monge MA, Cordova KE, Gándara F. ACS Appl Mater Interfaces, 2018, 10: 733–744

    CAS  PubMed  Google Scholar 

  7. Kauffman DR, Thakkar J, Siva R, Matranga C, Ohodnicki PR, Zeng C, Jin R. ACS Appl Mater Interfaces, 2015, 7: 15626–15632

    CAS  PubMed  Google Scholar 

  8. Wang YR, Ding HM, Ma XY, Liu M, Yang YL, Chen Y, Li SL, Lan YQ. Angew Chem Int Ed, 2022, 61: e202114648

    CAS  Google Scholar 

  9. Lu M, Zhang M, Liu J, Chen Y, Liao JP, Yang MY, Cai YP, Li SL, Lan YQ. Angew Chem Int Ed, 2022, 61: e202200003

    CAS  Google Scholar 

  10. Du ZY, Xue YN, Liu XM, Li NF, Wang JL, Mei H, Xu Y. J Mater Chem A, 2022, 10: 3469–3477

    CAS  Google Scholar 

  11. Nakajima T, Tamaki Y, Ueno K, Kato E, Nishikawa T, Ohkubo K, Yamazaki Y, Morimoto T, Ishitani O. J Am Chem Soc, 2016, 138: 13818–13821

    CAS  PubMed  Google Scholar 

  12. Chang X, Wang T, Gong J. Energy Environ Sci, 2016, 9: 2177–2196

    CAS  Google Scholar 

  13. Liang J, Huang YB, Cao R. Coord Chem Rev, 2019, 378: 32–65

    CAS  Google Scholar 

  14. Luo R, Yang Y, Chen K, Liu X, Chen M, Xu W, Liu B, Ji H, Fang Y. J Mater Chem A, 2021, 9: 20941–20956

    CAS  Google Scholar 

  15. Maeda C, Shimonishi J, Miyazaki R, Hasegawa JY, Ema T. Chem Eur J, 2016, 22: 6556–6563

    CAS  PubMed  Google Scholar 

  16. Reiter M, Vagin S, Kronast A, Jandl C, Rieger B. Chem Sci, 2017, 8: 1876–1882

    CAS  PubMed  Google Scholar 

  17. Alkordi MH, Weseliński ŁJ, D’Elia V, Barman S, Cadiau A, Hedhili MN, Cairns AJ, AbdulHalim RG, Basset JM, Eddaoudi M. J Mater Chem A, 2016, 4: 7453–7460

    CAS  Google Scholar 

  18. Xu Y, Lin L, Xiao M, Wang S, Smith AT, Sun L, Meng Y. Prog Polym Sci, 2018, 80: 163–182

    CAS  Google Scholar 

  19. Steinbauer J, Kubis C, Ludwig R, Werner T. ACS Sustain Chem Eng, 2018, 6: 10778–10788

    CAS  Google Scholar 

  20. Leu MK, Vicente I, Fernandes JA, de Pedro I, Dupont J, Sans V, Licence P, Gual A, Cano I. Appl Catal B-Environ, 2019, 245: 240–250

    CAS  Google Scholar 

  21. Liu J, Yang G, Liu Y, Zhang D, Hu X, Zhang Z. Green Chem, 2020, 22: 4509–4515

    CAS  Google Scholar 

  22. Anyushin AV, Kondinski A, Parac-Vogt TN. Chem Soc Rev, 2020, 49: 382–432

    CAS  PubMed  Google Scholar 

  23. Li N, Liu J, Dong BX, Lan YQ. Angew Chem Int Ed, 2020, 59: 20779–20793

    CAS  Google Scholar 

  24. Wang JL, Yang MX, Li NF, Liu XM, Li JN, Ping QD, Xu Y. Inorg Chem, 2021, 60: 13748–13755

    CAS  PubMed  Google Scholar 

  25. Li XX, Zhao D, Zheng ST. Coord Chem Rev, 2019, 397: 220–240

    CAS  Google Scholar 

  26. Wang J, Liu X, Du Z, Xu Y. Dalton Trans, 2021, 50: 7871–7886

    CAS  PubMed  Google Scholar 

  27. Chakraborty S, Petel BE, Schreiber E, Matson EM. Nanoscale Adv, 2021, 3: 1293–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gu Y, Li Q, Zang D, Huang Y, Yu H, Wei Y. Angew Chem Int Ed, 2021, 60: 13310–13316

    CAS  Google Scholar 

  29. Tian HR, Zhang Z, Liu SM, Dang TY, Li XH, Lu Y, Liu SX. J Mater Chem A, 2020, 8: 12398–12405

    CAS  Google Scholar 

  30. Zheng Y, Tan Y, Zhou W, Hao X, Liu X, Peng J. Inorg Chem, 2021, 60: 12323–12330

    CAS  PubMed  Google Scholar 

  31. Cao JP, Xue YS, Hu ZB, Luo XM, Cui CH, Song Y, Xu Y. Inorg Chem, 2019, 58: 2645–2651

    CAS  PubMed  Google Scholar 

  32. Zhang Y, Gan H, Qin C, Wang X, Su Z, Zaworotko MJ. J Am Chem Soc, 2018, 140: 17365–17368

    CAS  PubMed  Google Scholar 

  33. Gong Y, Tao Y, Xu N, Sun C, Wang X, Su Z. Chem Commun, 2019, 55: 10701–10704

    CAS  Google Scholar 

  34. Aureliano M, Gumerova NI, Sciortino G, Garribba E, Rompel A, Crans DC. Coord Chem Rev, 2021, 447: 214143–214156

    CAS  Google Scholar 

  35. Müller A, Sessoli R, Krickemeyer E, Bögge H, Meyer J, Gatteschi D, Pardi L, Westphal J, Hovemeier K, Rohlfing R, Döring J, Hellweg F, Beugholt C, Schmidtmann M. Inorg Chem, 1997, 36: 5239–5250

    Google Scholar 

  36. Müller A, Penk M, Krickemeyer E, Bögge H, Walberg HJ. Angew Chem Int Ed Engl, 1988, 27: 1719–1721

    Google Scholar 

  37. Müller A, Krickemeyer E, Penk M, Walberg HJ, Bögge H. Angew Chem Int Ed, 1987, 26: 1045–1046

    Google Scholar 

  38. Tidmarsh IS, Laye RH, Brearley PR, Shanmugam M, Sañudo EC, Sorace L, Caneschi A, McInnes EJL. Chem Eur J, 2007, 13: 6329–6338

    CAS  PubMed  Google Scholar 

  39. Karet GB, Streib WE, Bollinger JC, Christou G, Sun Z, Hendrickson DN. Chem Commun, 1999, 2249–2250

  40. Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP, Delferro M. Chem Rev, 2018, 119: 2128–2191

    PubMed  Google Scholar 

  41. Dang TY, Li RH, Tian HR, Wang Q, Lu Y, Liu SX. Inorg Chem Front, 2021, 8: 4367–4375

    CAS  Google Scholar 

  42. Wang X, Brunson K, Xie H, Colliard I, Wasson MC, Gong X, Ma K, Wu Y, Son FA, Idrees KB, Zhang X, Notestein JM, Nyman M, Farha OK. J Am Chem Soc, 2021, 143: 21056–21065

    CAS  PubMed  Google Scholar 

  43. Chen B, Huang X, Wang B, Lin Z, Hu J, Chi Y, Hu C. Chem Eur J, 2013, 19: 4408–4413

    CAS  PubMed  Google Scholar 

  44. Wang K, Niu Y, Zhao D, Zhao Y, Ma P, Zhang D, Wang J, Niu J. Inorg Chem, 2017, 56: 14053–14059

    CAS  PubMed  Google Scholar 

  45. Wan R, Jing Z, Xu Q, Ma X, Ma P, Zhang C, Niu J, Wang J. Inorg Chem, 2021, 60: 2888–2892

    CAS  PubMed  Google Scholar 

  46. Gan HM, Qin C, Zhao L, Sun C, Wang XL, Su ZM. Cryst Growth Des, 2021, 21: 1028–1034

    CAS  Google Scholar 

  47. Wang J, Cao J, Du Z, Liu X, Li J, Ping Q, Zang T, Xu Y. Chin Chem Lett, 2023, 34: 106917

    CAS  Google Scholar 

  48. Cao JP, Xue YS, Li NF, Gong JJ, Kang RK, Xu Y. J Am Chem Soc, 2019, 141: 19487–19497

    CAS  PubMed  Google Scholar 

  49. Zhu YH, Yang JB, Liu XM, Wang JL, Ping QD, Du ZY, Li JN, Zang TT, Mei H, Xu Y. Dalton Trans, 2022, 51: 3502–3511

    CAS  PubMed  Google Scholar 

  50. Ping QD, Cao JP, Han YM, Yang MX, Hong YL, Li JN, Wang JL, Chen JL, Mei H, Xu Y. Inorg Chim Acta, 2021, 517: 120198–120204

    CAS  Google Scholar 

  51. Huang X, Gu X, Zhang H, Shen G, Gong S, Yang B, Wang Y, Chen Y. J CO2Utiliz, 2021, 45: 101419

    CAS  Google Scholar 

  52. Tang J, Wei F, Ding S, Wang X, Xie G, Fan H. Chem Eur J, 2021, 27: 12890–12899

    CAS  PubMed  Google Scholar 

  53. Zhu Y, Huang Y, Li Q, Zang D, Gu J, Tang Y, Wei Y. Inorg Chem, 2020, 59: 2575–2583

    CAS  PubMed  Google Scholar 

  54. Li J, Huang X, Yang S, Xu Y, Hu C. Cryst Growth Des, 2015, 15: 1907–1914

    CAS  Google Scholar 

  55. Cao CS, Xia SM, Song ZJ, Xu H, Shi Y, He LN, Cheng P, Zhao B. Angew Chem Int Ed, 2020, 59: 8586–8593

    CAS  Google Scholar 

  56. Xu H, Cao CS, Hu HS, Wang SB, Liu JC, Cheng P, Kaltsoyannis N, Li J, Zhao B. Angew Chem Int Ed, 2019, 58: 6022–6027

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu (BK20191359), the National Natural Science Foundation of China (92161109), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_1343) and the Social Science Foundation of Jiangsu (19TQB002). We gratefully acknowledge the support from Prof. Qiong Zhang (Anhui University) in theoretical calculations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Mei or Yan Xu.

Additional information

Conflict of interest The authors declare no conflict of interest.

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JL., Cao, JP., Zhu, YH. et al. Four unprecedented V14 clusters as highly efficient heterogeneous catalyst for CO2 fixation with epoxides and oxidation of sulfides. Sci. China Chem. 66, 107–116 (2023). https://doi.org/10.1007/s11426-022-1424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1424-9

Keywords

Navigation