Skip to main content
Log in

Sulfur-induced dynamic reconstruction of iron-nitrogen species for highly active neutral oxygen reduction reactions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The neutral oxygen reduction reaction (ORR) has attracted tremendous attention for its broad prospects in next-generation power storage systems. However, the extremely sluggish cathodic reaction process and the limited cognition of the reaction mechanism greatly hinder its practical application. Here, we demonstrate a dynamic reconstruction behavior induced by sulfur of the iron-nitrogen (Fe-Nx) species in neutral solution. Our developed FeS1N3-OH configuration effectively optimizes the reaction kinetics by regulating the adsorption energy of oxygen intermediates for central catalytic sites. Consequently, this structure exhibits over 363% enhancement in ORR mass activity compared to the pristine FeN4 sites under neutral electrolyte. Moreover, a neutral zinc-air battery assembled with this electrocatalyst reached an ultrahigh peak power density (81.2 mW cm−2), robust stability (more than 100 h) as well as superior tolerance to extreme environments (operating between −20 °C and 60 °C), representing a critical breakthrough for neutral ORR exploration and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service RF. Science, 2021, 372: 890–891

    CAS  Google Scholar 

  2. Sun W, Wang F, Zhang B, Zhang M, Küpers V, Ji X, Theile C, Bieker P, Xu K, Wang C, Winter M. Science, 2021, 371: 46–51

    CAS  Google Scholar 

  3. Zhou T, Shan H, Yu H, Zhong C, Ge J, Zhang N, Chu W, Yan W, Xu Q, Wu H, Wu C, Xie Y. Adv Mater, 2020, 32: 2003251

    CAS  Google Scholar 

  4. Zhou T, Zhang N, Wu C, Xie Y. Energy Environ Sci, 2020, 13: 1132–1153

    CAS  Google Scholar 

  5. Xie L, Li X, Wang B, Meng J, Lei H, Zhang W, Cao R. Angew Chem Intl Edit, 2019, 58: 18883–18887

    CAS  Google Scholar 

  6. Luo X, Yang M, Song W, Fang Q, Wei X, Jiao L, Xu W, Kang Y, Wang H, Wu N, Gu W, Zheng L, Hu L, Zhu C. Adv Funct Mater, 2021, 31: 2101193

    CAS  Google Scholar 

  7. Li Y, Huang J, Hu X, Bi L, Cai P, Jia J, Chai G, Wei S, Dai L, Wen Z. Adv Funct Mater, 2018, 28: 1803330

    Google Scholar 

  8. Yan B, Concannon NM, Milshtein JD, Brushett FR, Surendranath Y. Angew Chem Int Ed, 2017, 56: 7496–7499

    CAS  Google Scholar 

  9. Xie X, He C, Li B, He Y, Cullen DA, Wegener EC, Kropf AJ, Martinez U, Cheng Y, Engelhard MH, Bowden ME, Song M, Lemmon T, Li XS, Nie Z, Liu J, Myers DJ, Zelenay P, Wang G, Wu G, Ramani V, Shao Y. Nat Catal, 2020, 3: 1044–1054

    CAS  Google Scholar 

  10. Zhou T, Xu W, Zhang N, Du Z, Zhong C, Yan W, Ju H, Chu W, Jiang H, Wu C, Xie Y. Adv Mater, 2019, 31: 1807468

    Google Scholar 

  11. Chen P, Zhang N, Zhou T, Tong Y, Yan W, Chu W, Wu C, Xie Y. ACS Mater Lett, 2019, 1: 139–146

    CAS  Google Scholar 

  12. Li X, Cao CS, Hung SF, Lu YR, Cai W, Rykov AI, Miao S, Xi S, Yang H, Hu Z, Wang J, Zhao J, Alp EE, Xu W, Chan TS, Chen H, Xiong Q, Xiao H, Huang Y, Li J, Zhang T, Liu B. Chem, 2020, 6: 3440–3454

    CAS  Google Scholar 

  13. Yin SH, Yang J, Han Y, Li G, Wan LY, Chen YH, Chen C, Qu XM, Jiang YX, Sun SG. Angew Chem Int Ed, 2020, 59: 21976–21979

    CAS  Google Scholar 

  14. Wan X, Liu X, Li Y, Yu R, Zheng L, Yan W, Wang H, Xu M, Shui J. Nat Catal, 2019, 2: 259–268

    CAS  Google Scholar 

  15. Tang T, Ding L, Jiang Z, Hu JS, Wan LJ. Sci China Chem, 2020, 63: 1517–1542

    CAS  Google Scholar 

  16. Dey S, Mondal B, Chatterjee S, Rana A, Amanullah S, Dey A. Nat Rev Chem, 2017, 1: 0098

    CAS  Google Scholar 

  17. Qu Y, Wang L, Li Z, Li P, Zhang Q, Lin Y, Zhou F, Wang H, Yang Z, Hu Y, Zhu M, Zhao X, Han X, Wang C, Xu Q, Gu L, Luo J, Zheng L, Wu Y. Adv Mater, 2019, 31: 1904496

    CAS  Google Scholar 

  18. Qiao Z, Wang C, Li C, Zeng Y, Hwang S, Li B, Karakalos S, Park J, Kropf AJ, Wegener EC, Gong Q, Xu H, Wang G, Myers DJ, Xie J, Spendelow JS, Wu G. Energy Environ Sci, 2021, 14: 4948–4960

    CAS  Google Scholar 

  19. Zhang N, Zhou T, Chen M, Feng H, Yuan R, Zhong C’, Yan W, Tian Y, Wu X, Chu W, Wu C, Xie Y. Energy Environ Sci, 2020, 13: 111–118

    CAS  Google Scholar 

  20. Jiao L, Li J, Richard LLR, Sun Q, Stracensky T, Liu E, Sougrati MT, Zhao Z, Yang F, Zhong S, Xu H, Mukerjee S, Huang Y, Cullen DA, Park JH, Ferrandon M, Myers DJ, Jaouen F, Jia Q. Nat Mater, 2021, 20: 1385–1391

    CAS  Google Scholar 

  21. He Y, Guo H, Hwang S, Yang X, He Z, Braaten J, Karakalos S, Shan W, Wang M, Zhou H, Feng Z, More KL, Wang G, Su D, Cullen DA, Fei L, Litster S, Wu G. Adv Mater, 2020, 32: 2003577

    CAS  Google Scholar 

  22. Ding L, Tang T, Hu JS. Acta Physico Chim Sin, 2020, 0: 2010048–0

    Google Scholar 

  23. Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby EF, Zelenay P, Mukerjee S. ACS Nano, 2015, 9: 12496–12505

    CAS  Google Scholar 

  24. Yang X, Xia D, Kang Y, Du H, Kang F, Gan L, Li J. Adv Sci, 2020, 7: 2000176

    CAS  Google Scholar 

  25. Cao L, Luo Q, Liu W, Lin Y, Liu X, Cao Y, Zhang W, Wu Y, Yang J, Yao T, Wei S. Nat Catal, 2019, 2: 134–141

    CAS  Google Scholar 

  26. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei Z, Wan LJ. J Am Chem Soc, 2016, 138: 3570–3578

    CAS  Google Scholar 

  27. Yu L, Li Y, Ruan Y. Angew Chem Int Ed, 2021, 60: 25296–25301

    CAS  Google Scholar 

  28. Liu S, Cheng H, Xia J, Wang C, Gui R, Zhou T, Liu H, Peng J, Zhang N, Wang W, Chu W, Wu HA, Wu C, Xie Y. Nat Sci, 2021, 1: 210005

    Google Scholar 

  29. An L, Zhang Z, Feng J, Lv F, Li Y, Wang R, Lu M, Gupta RB, Xi P, Zhang S. J Am Chem Soc, 2018, 140: 17624–17631

    CAS  Google Scholar 

  30. Wang Y, Tang YJ, Zhou K. J Am Chem Soc, 2019, 141: 14115–14119

    CAS  Google Scholar 

  31. Li J, Sougrati MT, Zitolo A, Ablett JM, Oğuz IC, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di Cicco A, Kumar K, Dubau L, Maillard F, Dražić G, Jaouen F. Nat Catal, 2021, 4: 10–19

    Google Scholar 

  32. Iwase K, Yoshioka T, Nakanishi S, Hashimoto K, Kamiya K. Angew Chem Int Ed, 2015, 54: 11068–11072

    CAS  Google Scholar 

  33. Shang H, Zhou X, Dong J, Li A, Zhao X, Liu Q, Lin Y, Pei J, Li Z, Jiang Z, Zhou D, Zheng L, Wang Y, Zhou J, Yang Z, Cao R, Sarangi R, Sun T, Yang X, Zheng X, Yan W, Zhuang Z, Li J, Chen W, Wang D, Zhang J, Li Y. Nat Commun, 2020, 11: 3049

    CAS  Google Scholar 

  34. Zhang J, Zhao Y, Chen C, Huang YC, Dong CL, Chen CJ, Liu RS, Wang C, Yan K, Li Y, Wang G. J Am Chem Soc, 2019, 141: 20118–20126

    CAS  Google Scholar 

  35. Liu J, Xiao J, Luo B, Tian E, Waterhouse GIN. Chem Eng J, 2022, 427: 132038

    CAS  Google Scholar 

  36. Yao J, Huang W, Fang W, Kuang M, Jia N, Ren H, Liu D, Lv C, Liu C, Xu J, Yan Q. Small Methods, 2020, 4: 2000494

    CAS  Google Scholar 

  37. Yang CL, Wang LN, Yin P, Liu J, Chen MX, Yan QQ, Wang ZS, Xu SL, Chu SQ, Cui C, Ju H, Zhu J, Lin Y, Shui J, Liang HW. Science, 2021, 374: 459–464

    CAS  Google Scholar 

  38. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Google Scholar 

  39. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    CAS  Google Scholar 

  40. Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561

    CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  42. Monkhorst HJ, Pack JD. Phys Rev B, 1976, 13: 5188–5192

    Google Scholar 

  43. Tang W, Sanville E, Henkelman G. J Phys-Condens Matter, 2009, 21:084204

    CAS  Google Scholar 

  44. Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456–1465

    CAS  Google Scholar 

  45. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Phys Rev B, 1998, 57: 1505–1509

    CAS  Google Scholar 

  46. Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S. J Am Chem Soc, 2014, 136: 10053–10061

    CAS  Google Scholar 

  47. Pampel J, Fellinger TP. Adv Energy Mater, 2016, 6: 1502389

    Google Scholar 

  48. He Y, Liu S, Priest C, Shi Q, Wu G. Chem Soc Rev, 2020, 49: 3484–3524

    CAS  Google Scholar 

  49. Cheng H, Gui R, Yu H, Wang C, Liu S, Liu H, Zhou T, Zhang N, Zheng X, Chu W, Lin Y, Wu HA, Wu C, Xie Y. Proc Natl Acad Sci USA, 2021, 118: e2104026118

    CAS  Google Scholar 

  50. Zhang N, Zhou T, Ge J, Lin Y, Du Z, Zhong C, Wang W, Jiao Q, Yuan R, Tian Y, Chu W, Wu C, Xie Y. Matter, 2020, 3: 509–521

    Google Scholar 

  51. Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C, Xie Y. Angew Chem Int Ed, 2017, 56: 610–614

    CAS  Google Scholar 

  52. Khan A, Ali N, Bilal M, Malik S, Badshah S, Iqbal HMN. Appl Sci, 2019, 9: 5138

    CAS  Google Scholar 

  53. Posada JOG, Hall PJ. Int J Hydrogen Energy, 2016, 41: 20807–20817

    CAS  Google Scholar 

  54. Huang X, Schmucker A, Dyke J, Hall SM, Retrum J, Stein B, Remmes N, Baxter DV, Dragnea B, Bronstein LM. J Mater Chem, 2009, 19: 4231–4239

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 21925110, 91745113, 22102170, 21890751), the National Program for Support of Top-Notch Young Professionals, the Fundamental Research Funds for the Central Universities (No. WK 2060190084), the Youth Innovation Promotion Association of Chinese academy of Science (No. Y201877), the Institute of Energy, Hefei Comprehensive National Science Center under (Grant No. 21KZS213). The authors appreciate the support from the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology, and the support from the beamline 1W1B in Beijing Synchrotron Radiation Facility (BSRF, Beijing, China), the BL14W1 beamline at the Shanghai Synchrotron Radiation Facility (SSRF, Shanghai China), and the beamlines U19, BL11U, BL01B, BL10B, and BL12B of National Synchrotron Radiation Laboratory (NSRL, Hefei, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangsheng Chu or Changzheng Wu.

Ethics declarations

Conflict of interest The authors declare no conflicts of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhou, T., Zhang, K. et al. Sulfur-induced dynamic reconstruction of iron-nitrogen species for highly active neutral oxygen reduction reactions. Sci. China Chem. 65, 2476–2486 (2022). https://doi.org/10.1007/s11426-022-1384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1384-1

Keywords

Navigation