Skip to main content
Log in

Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Biodegradable polymers are a promising sustainable alternative to conventional petroleum-based polymers and have attracted recent extensive research interest due to their potential environmental friendliness and sustainability. Among them, aliphatic polyesters and polycarbonates are the most extensively studied ones. The metal-catalyzed ring-opening polymerization (ROP) of cyclic esters and ring-opening copolymerization (ROCOP) of epoxides with anhydrides or CO2 are often considered to be the classic and efficient methods to synthesize stereoregular polymers. Moreover, the versatile salen-type metal complexes have been used to prepare almost all types of biodegradable polymers with excellent stereoselectivity control. Hence, this review focuses on stereoselective synthesis of biodegradable polymers by salen-type metal catalysts developed in the last decade. Aliphatic polyesters from ROP of cyclic esters, ROCOP of epoxides with cyclic anhydrides, and carbonylative polymerization of epoxides, as well as aliphatic poly(thio)carbonate from ROCOP of epoxides with CO2 or COS are discussed in detail. This review highlights the polymerization mechanisms, catalyst characteristics, and factors controlling the stereoselectivity of each polymerization reaction, aiming to provide general rules for the future design of stereoselective catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breulmann M, Künkel A, Philipp S, Reimer V, Siegenthaler KO, Skupin G, Yamamoto M. Polymers, biodegradable. Ullmann’s Encyclopedia of Industrial Chemistry. Berlin, Weinheim: Wiley-VCH, 2009

    Google Scholar 

  2. Merrick JM, Doudoroff M. Nature, 1961, 189: 890–892

    Article  CAS  PubMed  Google Scholar 

  3. Merrick JM, Doudoroff M. J Bacteriol, 1964, 88: 60–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang X, Fevre M, Jones GO, Waymouth RM. Chem Rev, 2018, 118: 839–885

    Article  CAS  PubMed  Google Scholar 

  5. Shah AA, Hasan F, Hameed A, Ahmed S. Biotechnol Adv, 2008, 26: 246–265

    Article  CAS  PubMed  Google Scholar 

  6. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Int J Mol Sci, 2009, 10: 3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yagi H, Ninomiya F, Funabashi M, Kunioka M. Polym Degrad Stab, 2013, 98: 1182–1187

    Article  CAS  Google Scholar 

  8. Hua X, Liu X, Cui D. Macromolecules, 2020, 53: 5289–5296

    Article  CAS  Google Scholar 

  9. Wing Hong L, Yu J. J Appl Polym Sci, 2003, 87: 205–213

    Article  Google Scholar 

  10. Hwang Y, Ree M, Kim H. Catal Today, 2006, 115: 288–294

    Article  CAS  Google Scholar 

  11. Moon J, Kim MY, Kim BM, Lee JC, Choi MC, Kim JR. Macromol Res, 2016, 24: 415–421

    Article  CAS  Google Scholar 

  12. Yagi H, Ninomiya F, Funabashi M, Kunioka M. Polym Degrad Stab, 2009, 94: 1397–1404

    Article  CAS  Google Scholar 

  13. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chem Rev, 2009, 109: 6102–6211

    Article  CAS  PubMed  Google Scholar 

  14. Workentin MS. J Am Chem Soc, 2002, 124: 7250–7251

    Article  CAS  Google Scholar 

  15. Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Nat Rev Chem, 2019, 3: 514–535

    Article  CAS  Google Scholar 

  16. Chile LE, Mehrkhodavandi P, Hatzikiriakos SG. Macromolecules, 2016, 49: 909–919

    Article  CAS  Google Scholar 

  17. Romain C, Heinrich B, Laponnaz SB, Dagorne S. Chem Commun, 2012, 48: 2213–2215

    Article  CAS  Google Scholar 

  18. Farah S, Anderson DG, Langer R. Adv Drug Deliver Rev, 2016, 107: 367–392

    Article  CAS  Google Scholar 

  19. Garlotta D. J Polyms Environ, 2001, 9: 63–84

    Article  CAS  Google Scholar 

  20. Södergård A, Stolt M. Prog Polym Sci, 2002, 27: 1123–1163

    Article  Google Scholar 

  21. Carpentier JF. Organometallics, 2015, 34: 4175–4189

    Article  CAS  Google Scholar 

  22. Lecomte P, Jérôme C. Recent developments in ring-opening polymerization of lactones. Rieger B, Künkel A, Coates G W, Reichardt R, Dinjus E, Zevaco T A, Eds. Synthetic Biodegradable Polymers. Berlin, Heidelberg: Springer, 2012. 173–217

    Google Scholar 

  23. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM. Macromolecules, 2010, 43: 2093–2107

    Article  CAS  Google Scholar 

  24. Thomas CM. Chem Soc Rev, 2010, 39: 165–173

    Article  CAS  PubMed  Google Scholar 

  25. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL. Chem Rev, 2007, 107: 5813–5840

    Article  CAS  PubMed  Google Scholar 

  26. Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem Rev, 2004, 104: 6147–6176

    Article  CAS  PubMed  Google Scholar 

  27. Okada M. Prog Polym Sci, 2002, 27: 87–133

    Article  CAS  Google Scholar 

  28. Tschan MJL, Gauvin RM, Thomas CM. Chem Soc Rev, 2021, 50: 13587–13608

    Article  CAS  PubMed  Google Scholar 

  29. Sarazin Y, Carpentier JF. Chem Rev, 2015, 115: 3564–3614

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Shakaroun RM, Guillaume SM, Carpentier JF. Chem Eur J, 2020, 26: 128–138

    Article  CAS  PubMed  Google Scholar 

  31. Carpentier JF. Macromol Rapid Commun, 2010, 31: 1696–1705

    Article  CAS  PubMed  Google Scholar 

  32. Ligny R, Hänninen MM, Guillaume SM, Carpentier JF. Chem Commun, 2018, 54: 8024–8031

    Article  CAS  Google Scholar 

  33. Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW. Chem Rev, 2014, 114: 8129–8152

    Article  CAS  PubMed  Google Scholar 

  34. Kielland N, Whiteoak CJ, Kleij AW. Adv Synth Catal, 2013, 355: 2115–2138

    Article  CAS  Google Scholar 

  35. Lu XB, Darensbourg DJ. Chem Soc Rev, 2012, 41: 1462–1484

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Zhang YY, Hu LF, Zhang XH, Du BY, Xu JT. Prog Polym Sci, 2018, 82: 120–157

    Article  CAS  Google Scholar 

  37. Plajer AJ, Williams CK. Angew Chem Intl Edit, 2022, 61: e202104495

    Article  CAS  Google Scholar 

  38. Strianese M, Pappalardo D, Mazzeo M, Lamberti M, Pellecchia C. Dalton Trans, 2020, 49: 16533–16550

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y-Y, Zhang X-H. Copolymerization of c1 building blocks with epoxides. Tang C, Ryu C Y, Eds. Sustainable Polymers from Biomass. Weinheim Wiley-VCH, 2017. 279–313

    Chapter  Google Scholar 

  40. Lu XB, Ren WM, Wu GP. Acc Chem Res, 2012, 45: 1721–1735

    Article  CAS  PubMed  Google Scholar 

  41. Darensbourg DJ. Chem Rev, 2007, 107: 2388–2410

    Article  CAS  PubMed  Google Scholar 

  42. Darensbourg DJ, Wilson SJ. Green Chem, 2012, 14: 2665–2671

    Article  CAS  Google Scholar 

  43. Poland SJ, Darensbourg DJ. Green Chem, 2017, 19: 4990–5011

    Article  CAS  Google Scholar 

  44. Winnacker M. Eur J Lipid Sci Technol, 2019, 121: 1900101

    Article  CAS  Google Scholar 

  45. Tang X. Chemical synthesis of polyhydroxyalkanoates via metal-catalyzed ring-opening polymerization of cyclic esters. Abe A, Albertsson A-C, Coates G W, Genzer J, Kobayashi S, Lee K-S, Leibler L, Long T E, Möller M, Okay O, Percec V, Tang B Z, Terentjev E M, Theato P, Voit B, Wiesner U, Zhang X, Eds. Advances in Polymer Science. Berlin, Heidelberg: Springer, 2022. 1–21

    Google Scholar 

  46. Tang X, Chen EYX. Chem, 2019, 5: 284–312

    Article  CAS  Google Scholar 

  47. Shi Y, Pan BW, Zhou Y, Zhou J, Liu YL, Zhou F. Org Biomol Chem, 2020, 18: 8597–8619

    Article  CAS  PubMed  Google Scholar 

  48. Shaw S, White JD. Chem Rev, 2019, 119: 9381–9426

    Article  CAS  PubMed  Google Scholar 

  49. Le Borgne A, Vincens V, Jouglard M, Spassky N. Makromolekulare Chem MacroMol Symposia, 1993, 73: 37–46

    Article  CAS  Google Scholar 

  50. Gualandi A, Calogero F, Potenti S, Cozzi PG. Molecules, 2019, 24: 1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-Itry R, Lamnawar K, Maazouz A. Polym Degrad Stab, 2012, 97: 1898–1914

    Article  CAS  Google Scholar 

  52. Spassky N, Wisniewski M, Pluta C, Le Borgne A. Macromol Chem Phys, 1996, 197: 2627–2637

    Article  CAS  Google Scholar 

  53. Radano CP, Baker GL, Smith MR. J Am Chem Soc, 2000, 122: 1552–1553

    Article  CAS  Google Scholar 

  54. Ovitt TM, Coates GW. J Am Chem Soc, 2002, 124: 1316–1326

    Article  CAS  PubMed  Google Scholar 

  55. Gao B, Duan R, Pang X, Li X, Qu Z, Tang Z, Zhuang X, Chen X. Organometallics, 2013, 32: 5435–5444

    Article  CAS  Google Scholar 

  56. Zhong Z, Dijkstra PJ, Feijen J. Angew Chem Int Ed, 2002, 41: 4510–4513

    Article  CAS  Google Scholar 

  57. Nomura N, Ishii R, Yamamoto Y, Kondo T. Chem Eur J, 2007, 13: 4433–4451

    Article  CAS  PubMed  Google Scholar 

  58. Maudoux N, Roisnel T, Dorcet V, Carpentier JF, Sarazin Y. Chem Eur J, 2014, 20: 6131–6147

    Article  CAS  PubMed  Google Scholar 

  59. Guo Z, Duan R, Deng M, Pang X, Hu C, Chen X. Sci China Chem, 2015, 58: 1741–1747

    Article  CAS  Google Scholar 

  60. Pang X, Duan R, Li X, Gao B, Sun Z, Wang X, Chen X. RSC Adv, 2014, 4: 22561–22566

    Article  CAS  Google Scholar 

  61. Pang X, Duan R, Li X, Sun Z, Zhang H, Wang X, Chen X. RSC Adv, 2014, 4: 57210–57217

    Article  CAS  Google Scholar 

  62. Qu Z, Duan R, Pang X, Gao B, Li X, Tang Z, Wang X, Chen X. J Polym Sci Part A-Polym Chem, 2014, 52: 1344–1352

    Article  CAS  Google Scholar 

  63. Sun Z, Duan R, Yang J, Zhang H, Li S, Pang X, Chen W, Chen X. RSC Adv, 2016, 6: 17531–17538

    Article  CAS  Google Scholar 

  64. Aluthge DC, Patrick BO, Mehrkhodavandi P. Chem Commun, 2013, 49: 4295–4297

    Article  CAS  Google Scholar 

  65. Aluthge DC, Ahn JM, Mehrkhodavandi P. Chem Sci, 2015, 6: 5284–5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cui Y, Jiang J, Mao X, Wu J. Inorg Chem, 2019, 58: 218–227

    Article  CAS  PubMed  Google Scholar 

  67. Jones MD, Hancock SL, McKeown P, Schäfer PM, Buchard A, Thomas LH, Mahon MF, Lowe JP. Chem Commun, 2014, 50: 15967–15970

    Article  CAS  Google Scholar 

  68. Rosen T, Popowski Y, Goldberg I, Kol M. Chem Eur J, 2016, 22: 11533–11536

    Article  CAS  PubMed  Google Scholar 

  69. Rosen T, Goldberg I, Venditto V, Kol M. J Am Chem Soc, 2016, 138: 12041–12044

    Article  CAS  PubMed  Google Scholar 

  70. Rosen T, Rajpurohit J, Lipstman S, Venditto V, Kol M. Chem Eur J, 2020, 26: 17183–17189

    Article  CAS  PubMed  Google Scholar 

  71. Hador R, Lipstman S, Rescigno R, Venditto V, Kol M. Chem Commun, 2020, 56: 13528–13531

    Article  CAS  Google Scholar 

  72. Hador R, Botta A, Venditto V, Lipstman S, Goldberg I, Kol M. Angew Chem Int Ed, 2019, 58: 14679–14685

    Article  CAS  Google Scholar 

  73. Pilone A, Press K, Goldberg I, Kol M, Mazzeo M, Lamberti M. J Am Chem Soc, 2014, 136: 2940–2943

    Article  CAS  PubMed  Google Scholar 

  74. Rosen T, Goldberg I, Kol M. Eur J Inorg Chem, 2018, 2018(47): 5047–5052

    Article  CAS  Google Scholar 

  75. McKeown P, Davidson MG, Kociok-Köhn G, Jones MD. Chem Commun, 2016, 52: 10431–10434

    Article  CAS  Google Scholar 

  76. Britton L, Ditz D, Beament J, McKeown P, Quilter HC, Riley K, Mahon MF, Jones MD. Eur J Inorg Chem, 2019, 2019(22): 2768–2773

    Article  CAS  Google Scholar 

  77. Duan YL, Hu ZJ, Yang BQ, Ding FF, Wang W, Huang Y, Yang Y. Dalton Trans, 2017, 46: 11259–11270

    Article  CAS  PubMed  Google Scholar 

  78. Kirk SM, Kociok-Köhn G, Jones MD. Organometallics, 2016, 35: 3837–3843

    Article  CAS  Google Scholar 

  79. Stopper A, Rosen T, Venditto V, Goldberg I, Kol M. Chem Eur J, 2017, 23: 11540–11548

    Article  CAS  PubMed  Google Scholar 

  80. Driscoll OJ, Leung CKC, Mahon MF, McKeown P, Jones MD. Eur J Inorg Chem, 2018, 2018(47): 5129–5135

    Article  CAS  Google Scholar 

  81. Stewart JA, McKeown P, Driscoll OJ, Mahon MF, Ward BD, Jones MD. Macromolecules, 2019, 52: 5977–5984

    Article  CAS  Google Scholar 

  82. Ma H, Spaniol TP, Okuda J. Angew Chem Int Ed, 2006, 45: 7818–7821

    Article  Google Scholar 

  83. Ma H, Spaniol TP, Okuda J. Inorg Chem, 2008, 47: 3328–3339

    Article  CAS  PubMed  Google Scholar 

  84. Zhao W, Li CY, Wu CJ, Liu XL, Mou ZH, Yao CG, Cui DM. Chin J Polym Sci, 2018, 36: 202–206

    Article  CAS  Google Scholar 

  85. Zhao W, Liu B, Liu X, Wang X, Wang Y, Yao C, Wu C, Cui D. Polym Chem, 2015, 6: 7711–7716

    Article  CAS  Google Scholar 

  86. Zhao W, Wang Y, Liu X, Cui D. Chem Commun, 2012, 48: 4483–4485

    Article  CAS  Google Scholar 

  87. Zhao W, Wang Y, Liu X, Chen X, Cui D. Chem Asian J, 2012, 7: 2403–2410

    Article  CAS  PubMed  Google Scholar 

  88. Wang H, Ma H. Chem Commun, 2013, 49: 8686–8688

    Article  CAS  Google Scholar 

  89. Wang H, Yang Y, Ma H. Macromolecules, 2014, 47: 7750–7764

    Article  CAS  Google Scholar 

  90. Hu J, Kan C, Ma H. Inorg Chem, 2018, 57: 11240–11251

    Article  CAS  PubMed  Google Scholar 

  91. Hu J, Kan C, Wang H, Ma H. Macromolecules, 2018, 51: 5304–5312

    Article  CAS  Google Scholar 

  92. Gong Y, Ma H. Chem Commun, 2019, 55: 10112–10115

    Article  CAS  Google Scholar 

  93. Müller HM, Seebach D. Angew Chem Int Ed Engl, 1993, 32: 477–502

    Article  Google Scholar 

  94. Poirier Y, Nawrath C, Somerville C. Nat Biotechnol, 1995, 13: 142–150

    Article  CAS  Google Scholar 

  95. Sudesh K, Abe H, Doi Y. Prog Polym Sci, 2000, 25: 1503–1555

    Article  CAS  Google Scholar 

  96. Lenz RW, Marchessault RH. Biomacromolecules, 2005, 6: 1–8

    Article  CAS  PubMed  Google Scholar 

  97. Chen GQ. Chem Soc Rev, 2009, 38: 2434–2446

    Article  CAS  PubMed  Google Scholar 

  98. Chen G-Q. Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. Chen G G-Q, Eds. Plastics from bacteria: Natural Functions and Applications. Berlin, Heidelberg: Springer, 2010. 17–37

    Chapter  Google Scholar 

  99. Taguchi S, Iwata T, Abe H, Doi Y. 9.09 — poly(hydroxyalkanoate)s. Matyjaszewski K, Möller M, Eds. Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier, 2012. 157–182

    Chapter  Google Scholar 

  100. Laycock B, Halley P, Pratt S, Werker A, Lant P. Prog Polym Sci, 2013, 38: 536–583

    Article  CAS  Google Scholar 

  101. Somleva MN, Peoples OP, Snell KD. Plant Biotechnol J, 2013, 11: 233–252

    Article  CAS  PubMed  Google Scholar 

  102. Muhammadi, Shabina, Afzal M, Hameed S. Green Chem Lett Rev, 2015, 8: 56–77

    Article  Google Scholar 

  103. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Int J Biol Macromol, 2016, 89: 161–174

    Article  CAS  PubMed  Google Scholar 

  104. Li Z, Yang J, Loh XJ. NPG Asia Mater, 2016, 8: e265

    Article  CAS  Google Scholar 

  105. Inoue S, Tomoi Y, Tsuruta T, Furukawa J. Makromol Chem, 1961, 48: 229–233

    Article  CAS  Google Scholar 

  106. Kramer JW, Treitler DS, Dunn EW, Castro PM, Roisnel T, Thomas CM, Coates GW. J Am Chem Soc, 2009, 131: 16042–16044

    Article  CAS  PubMed  Google Scholar 

  107. Fang J, Tschan MJL, Roisnel T, Trivelli X, Gauvin RM, Thomas CM, Maron L. Polym Chem, 2013, 4: 360–367

    Article  CAS  Google Scholar 

  108. Zhuo Z, Zhang C, Luo Y, Wang Y, Yao Y, Yuan D, Cui D. Chem Commun, 2018, 54: 11998–12001

    Article  CAS  Google Scholar 

  109. Tang X, Chen EYX. Nat Commun, 2018, 9: 2345

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tang X, Westlie AH, Watson EM, Chen EYX. Science, 2019, 366: 754–758

    Article  CAS  PubMed  Google Scholar 

  111. Tang X, Westlie AH, Caporaso L, Cavallo L, Falivene L, Chen EYX. Angew Chem Int Ed, 2020, 59: 7881–7890

    Article  CAS  Google Scholar 

  112. Westlie AH, Chen EYX. Macromolecules, 2020, 53: 9906–9915

    Article  CAS  Google Scholar 

  113. Tang X, Shi C, Zhang Z, Chen EYX. Macromolecules, 2021, 54: 9401–9409

    Article  CAS  Google Scholar 

  114. Furukawa J, Iseda Y, Saegusa T, Fujii H. Makromol Chem, 1965, 89: 263–268

    Article  CAS  Google Scholar 

  115. Zhang YY, Yang L, Xie R, Yang GW, Wu GP. Macromolecules, 2021, 54: 9427–9436

    Article  CAS  Google Scholar 

  116. Dunn EW, Coates GW. J Am Chem Soc, 2010, 132: 11412–11413

    Article  CAS  PubMed  Google Scholar 

  117. Allmendinger M, Eberhardt R, Luinstra G, Rieger B. J Am Chem Soc, 2002, 124: 5646–5647

    Article  CAS  PubMed  Google Scholar 

  118. Allmendinger M, Eberhardt R, Luinstra GA, Rieger B. Macromol Chem Phys, 2003, 204: 564–569

    Article  CAS  Google Scholar 

  119. Yang J, Yang J, Li W, Lu X, Liu Y. Angew Chem, 2022, 134: 202116208

    Google Scholar 

  120. Paul S, Zhu Y, Romain C, Brooks R, Saini PK, Williams CK. Chem Commun, 2015, 51: 6459–6479

    Article  CAS  Google Scholar 

  121. Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Chem Rev, 2021, 121: 10865–10907

    Article  CAS  PubMed  Google Scholar 

  122. Rokicki G, Parzuchowski PG. Rop of cyclic carbonates and rop of macrocycles. Matyjaszewski K, Möller M. Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier, 2012. 247–308

    Chapter  Google Scholar 

  123. Brignou P, Guillaume SM, Roisnel T, Bourissou D, Carpentier JF. Chem Eur J, 2012, 18: 9360–9370

    Article  CAS  PubMed  Google Scholar 

  124. Darensbourg DJ, Choi W, Ganguly P, Richers CP. Macromolecules, 2006, 39: 4374–4379

    Article  CAS  Google Scholar 

  125. Darensbourg DJ, Choi W, Richers CP. Macromolecules, 2007, 40: 3521–3523

    Article  CAS  Google Scholar 

  126. Darensbourg DJ, Choi W, Karroonnirun O, Bhuvanesh N. Macromolecules, 2008, 41: 3493–3502

    Article  CAS  Google Scholar 

  127. Zhang W, Dai J, Wu YC, Chen JX, Shan SY, Cai Z, Zhu JB. ACS Macro Lett, 2022, 11: 173–178

    Article  CAS  PubMed  Google Scholar 

  128. Qin Z, Thomas CM, Lee S, Coates GW. Angew Chem Int Ed, 2003, 42: 5484–5487

    Article  CAS  Google Scholar 

  129. Lu XB, Wang Y. Angew Chem Int Ed, 2004, 43: 3574–3577

    Article  CAS  Google Scholar 

  130. Ren WM, Liu Y, Wu GP, Liu J, Lu XB. J Polym Sci Polym Chem, 2011, 49: 4894–4901

    Article  CAS  Google Scholar 

  131. Ren WM, Zhang WZ, Lu XB. Sci China Chem, 2010, 53: 1646–1652

    Article  CAS  Google Scholar 

  132. Wu GP, Wei SH, Ren WM, Lu XB, Li B, Zu YP, Darensbourg DJ. Energy Environ Sci, 2011, 4: 5084–5092

    Article  CAS  Google Scholar 

  133. Ren WM, Yue TJ, Zhang X, Gu GG, Liu Y, Lu XB. Macromolecules, 2017, 50: 7062–7069

    Article  CAS  Google Scholar 

  134. Ren WM, Liang MW, Xu YC, Lu XB. Polym Chem, 2013, 4: 4425–4433

    Article  CAS  Google Scholar 

  135. Wu GP, Xu PX, Lu XB, Zu YP, Wei SH, Ren WM, Darensbourg DJ. Macromolecules, 2013, 46: 2128–2133

    Article  CAS  Google Scholar 

  136. Longo JM, DiCiccio AM, Coates GW. J Am Chem Soc, 2014, 136: 15897–15900

    Article  CAS  PubMed  Google Scholar 

  137. Li J, Ren BH, Wan ZQ, Chen SY, Liu Y, Ren WM, Lu XB. J Am Chem Soc, 2019, 141: 8937–8942

    Article  CAS  PubMed  Google Scholar 

  138. Van Zee NJ, Coates GW. Angew Chem Int Ed, 2015, 54: 2665–2668

    Article  CAS  Google Scholar 

  139. Van Zee NJ, Sanford MJ, Coates GW. J Am Chem Soc, 2016, 138: 2755–2761

    Article  CAS  PubMed  Google Scholar 

  140. Nozaki K, Nakano K, Hiyama T. J Am Chem Soc, 1999, 121: 11008–11009

    Article  CAS  Google Scholar 

  141. Wu GP, Ren WM, Luo Y, Li B, Zhang WZ, Lu XB. J Am Chem Soc, 2012, 134: 5682–5688

    Article  CAS  PubMed  Google Scholar 

  142. Wu G, Jiang S, Lu X, Ren W, Yan S. Chin J Polym Sci, 2012, 30: 487–492

    Article  CAS  Google Scholar 

  143. Thevenon A, Cyriac A, Myers D, White AJP, Durr CB, Williams CK. J Am Chem Soc, 2018, 140: 6893–6903

    Article  CAS  PubMed  Google Scholar 

  144. Liu Y, Ren WM, Liu J, Lu XB. Angew Chem Int Ed, 2013, 52: 11594–11598

    Article  CAS  Google Scholar 

  145. Liu Y, Ren WM, Wang M, Liu C, Lu XB. Angew Chem Int Ed, 2015, 54: 2241–2244

    Article  CAS  Google Scholar 

  146. Liu Y, Fang LM, Ren BH, Lu XB. Macromolecules, 2020, 53: 2912–2918

    Article  CAS  Google Scholar 

  147. Liu Y, Ren WM, He KK, Lu XB. Nat Commun, 2014, 5: 5687–5693

    Article  CAS  PubMed  Google Scholar 

  148. Liu Y, Wang M, Ren WM, He KK, Xu YC, Liu J, Lu XB. Macromolecules, 2014, 47: 1269–1276

    Article  CAS  Google Scholar 

  149. Liu Y, Ren WM, Zhang WP, Zhao RR, Lu XB. Nat Commun, 2015, 6: 8594–8601

    Article  CAS  PubMed  Google Scholar 

  150. Liu Y, Wang M, Ren WM, Xu YC, Lu XB. Angew Chem Int Ed, 2015, 54: 7042–7046

    Article  CAS  Google Scholar 

  151. Yu Y, Fang LM, Liu Y, Lu XB. ACS Catal, 2021, 11: 8349–8357

    Article  CAS  Google Scholar 

  152. Liu Y, Zhou H, Guo JZ, Ren WM, Lu XB. Angew Chem Int Ed, 2017, 56: 4862–4866

    Article  CAS  Google Scholar 

  153. Liu Y, He G, Liu Y, Lu X. Chin J Chem, 2021, 39: 2386–2390

    Article  CAS  Google Scholar 

  154. Yue TJ, Ren WM, Chen L, Gu GG, Liu Y, Lu XB. Angew Chem Int Ed, 2018, 57: 12670–12674

    Article  CAS  Google Scholar 

  155. Li J, Liu Y, Ren WM, Lu XB. J Am Chem Soc, 2016, 138: 11493–11496

    Article  CAS  PubMed  Google Scholar 

  156. Li J, Ren BH, Chen SY, He GH, Liu Y, Ren WM, Zhou H, Lu XB. ACS Catal, 2019, 9: 1915–1922

    Article  CAS  Google Scholar 

  157. Li Y, Liu Y, Yang H, Zhang W, Lu X. Angew Chem, 2022, 134: 202202585

    Google Scholar 

  158. Li J, Liu Y, Ren WM, Lu XB. Proc Natl Acad Sci USA, 2020, 117: 15429–15436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. He GH, Ren BH, Chen SY, Liu Y, Lu XB. Angew Chem Int Ed, 2021, 60: 5994–6002

    Article  CAS  Google Scholar 

  160. Liu Y, Ren WM, Liu C, Fu S, Wang M, He KK, Li RR, Zhang R, Lu XB. Macromolecules, 2014, 47: 7775–7788

    Article  CAS  Google Scholar 

  161. Aida T, Sanuki K, Inoue S. Macromolecules, 1985, 18: 1049–1055

    Article  CAS  Google Scholar 

  162. Liu FP, Li J, Liu Y, Ren WM, Lu XB. Macromolecules, 2019, 52: 5652–5657

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52173093) and the Peking University Ge Li and Ning Zhao Life Science Research Fund for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Tang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Su, Y. & Tang, X. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Sci. China Chem. 65, 2096–2121 (2022). https://doi.org/10.1007/s11426-022-1377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1377-5

Keywords

Navigation