Skip to main content
Log in

Novel strategy for accurate tumor labeling: endogenous metabolic imaging through metabolic probes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Altered metabolism has long been recognized as a central hallmark of cancer; however, in the fluorescence imaging field, few studies have been conducted to label tumors by exploiting metabolic differences between cancer cells and normal cells. In this work, we successfully developed a metabolic probe MB-C for specific imaging of glutathione (GSH) dynamic metabolic pathways. GSH was endogenously metabolized to produce SO2via Na2S2O3 and thiosulfate sulfurtransferase, equilibrating with sulfites/bisulfites. MB-C was allowed to be activated by GSH along with multi-fluorescence emission increased in red and green channels and further sequence-response metabolites (SO2) of GSH in significant fluorescence ratio change of red and green channels. Furthermore, such evident fluorescence ratio changes could be used to distinguish cancer cells from normal cells and identify tumor and normal tissues. Therefore, GSH metabolic imaging was successfully applied to accurately label tumors, which provides a new idea and practical case for the precise visualization of malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin J, Huang L, Wu L, Li J, James TD, Lin W. Chem Soc Rev, 2021, 50: 12098–12150

    Article  CAS  Google Scholar 

  2. Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Chem Soc Rev, 2021, 51: 71–127

    Article  Google Scholar 

  3. Wu L, Liu J, Li P, Tang B, James TD. Chem Soc Rev, 2021, 50: 702–734

    Article  CAS  Google Scholar 

  4. Zhang X, Chen Y, He H, Wang S, Lei Z, Zhang F. Angew Chem Int Ed, 2021, 60: 26337–26341

    Article  CAS  Google Scholar 

  5. Zhang P, Gao D, An K, Shen Q, Wang C, Zhang Y, Pan X, Chen X, Lyv Y, Cui C, Liang T, Duan X, Liu J, Yang T, Hu X, Zhu JJ, Xu F, Tan W. Nat Chem, 2020, 12: 381–390

    Article  CAS  Google Scholar 

  6. Wen Y, Schreiber CL, Smith BD. Bioconjugate Chem, 2020, 31: 474–482

    Article  CAS  Google Scholar 

  7. Gao M, Yu F, Lv C, Choo J, Chen L. Chem Soc Rev, 2017, 46: 2237–2271

    Article  CAS  Google Scholar 

  8. Zhang J, Ning L, Huang J, Zhang C, Pu K. Chem Sci, 2020, 11: 618–630

    Article  CAS  Google Scholar 

  9. Gardner SH, Reinhardt CJ, Chan J. Angew Chem Int Ed, 2021, 60: 5000–5009

    Article  CAS  Google Scholar 

  10. Yue Y, Huo F, Yin C. Chem Sci, 2020, 12: 1220–1226

    Article  Google Scholar 

  11. Liu J, Liu M, Zhang H, Guo W. Angew Chem Int Ed, 2021, 60: 12992–12998

    Article  CAS  Google Scholar 

  12. Yang Z, Gu B, Jiang C, Zhang L, Liu Q, Song S. Nanomed-Nanotechnol Biol Med, 2021, 33: 102356

    Article  CAS  Google Scholar 

  13. Wen Y, Huo F, Wang J, Yin C. Anal Chem, 2019, 91: 15057–15063

    Article  CAS  Google Scholar 

  14. Zhang Y, Chen X, Yuan Q, Bian Y, Li M, Wang Y, Gao X, Su D. Chem Sci, 2021, 12: 14855–14862

    Article  CAS  Google Scholar 

  15. Panieri E, Santoro MM. Cell Death Dis, 2016, 7: e2253

    Article  CAS  Google Scholar 

  16. Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, Feng J, Wen J, Cheng S, Zhang Y, Yang W, Ye D, Lu Z, Huang C, Mei J, Zhang HF, Gao P, Jiang P, Su S, Sun B, Zhao SM. Sci China Life Sci, 2021, 65: 236–279

    Article  Google Scholar 

  17. Warburg O, Wind F, Negelein E. J Gen Physiol, 1927, 8: 519–530

    Article  CAS  Google Scholar 

  18. Lunt SY, Vander Heiden MG. Annu Rev Cell Dev Biol, 2011, 27: 441–464

    Article  CAS  Google Scholar 

  19. Halbrook CJ, Lyssiotis CA. Cancer Cell, 2017, 31: 5–19

    Article  CAS  Google Scholar 

  20. Zhang W, Huo F, Cheng F, Yin C. J Am Chem Soc, 2020, 142: 6324–6331

    Article  CAS  Google Scholar 

  21. Yue Y, Huo F, Cheng F, Zhu X, Mafireyi T, Strongin RM, Yin C. Chem Soc Rev, 2019, 48: 4155–4177

    Article  CAS  Google Scholar 

  22. Huang Y, Zhang Y, Huo F, Chao J, Cheng F, Yin C. J Am Chem Soc, 2020, 142: 18706–18714

    Article  CAS  Google Scholar 

  23. Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, Yin C. J Am Chem Soc, 2017, 139: 3181–3185

    Article  CAS  Google Scholar 

  24. Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP. Nat Methods, 2008, 5: 553–559

    Article  CAS  Google Scholar 

  25. Kannan N, Nguyen LV, Makarem M, Dong Y, Shih K, Eirew P, Raouf A, Emerman JT, Eaves CJ. Proc Natl Acad Sci USA, 2014, 111: 7789–7794

    Article  CAS  Google Scholar 

  26. Feng G, Luo X, Lu X, Xie S, Deng L, Kang W, He F, Zhang J, Lei C, Lin B, Huang Y, Nie Z, Yao S. Angew Chem Int Ed, 2019, 58: 6590–6594

    Article  CAS  Google Scholar 

  27. Sarbadhikary P, George BP, Abrahamse H. Theranostics, 2021, 11: 9054–9088

    Article  CAS  Google Scholar 

  28. Wen Y, Long Z, Bai X, Huo F, Yin C. Chem Eng J, 2022, 440: 135978

    Article  CAS  Google Scholar 

  29. Zhang W, Huo F, Liu T, Wen Y, Yin C. Dyes Pigments, 2016, 133: 248–254

    Article  CAS  Google Scholar 

  30. Yan J, Lee S, Zhang A, Yoon J. Chem Soc Rev, 2018, 47: 6900–6916

    Article  CAS  Google Scholar 

  31. Zhang H, Xu L, Chen W, Huang J, Huang C, Sheng J, Song X. Anal Chem, 2019, 91: 1904–1911

    Article  CAS  Google Scholar 

  32. Jiang X, Yu Y, Chen J, Zhao M, Chen H, Song X, Matzuk AJ, Carroll SL, Tan X, Sizovs A, Cheng N, Wang MC, Wang J. ACS Chem Biol, 2015, 10: 864–874

    Article  CAS  Google Scholar 

  33. Wei P, Liu L, Wen Y, Zhao G, Xue F, Yuan W, Li R, Zhong Y, Zhang M, Yi T. Angew Chem Int Ed, 2019, 58: 4547–4551

    Article  CAS  Google Scholar 

  34. Wei P, Yuan W, Xue F, Zhou W, Li R, Zhang D, Yi T. Chem Sci, 2018, 9: 495–501

    Article  CAS  Google Scholar 

  35. Dao HM, Whang CH, Shankar VK, Wang YH, Khan IA, Walker LA, Husain I, Khan SI, Murthy SN, Jo S. Chem Commun, 2020, 56: 1673–1676

    Article  CAS  Google Scholar 

  36. Shigemitsu H, Ohkubo K, Sato K, Bunno A, Mori T, Osakada Y, Fujitsuka M, Kida T. JACS Au, 2022, 2: 1472–1478

    Article  CAS  Google Scholar 

  37. Pagani S, Bonomi F, Cerletti P. Biochim Biophys Acta, 1983, 742: 116–121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21705102, 21775096, and 22074084) and the Basic Research Program of Shanxi Province (Free Exploration, 20210302123430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Yin.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Long, Z., Huo, F. et al. Novel strategy for accurate tumor labeling: endogenous metabolic imaging through metabolic probes. Sci. China Chem. 65, 2517–2527 (2022). https://doi.org/10.1007/s11426-022-1372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1372-y

Keywords

Navigation