Skip to main content
Log in

Regulating the dimensionality of diphosphaperylenediimide-based polymers by coordinating the out-of-plane anisotropic π-framework toward Ag+

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of hetero-π-conjugated molecules is of significance for constructing diverse assembling superstructures based on heteroatom-related bonded or nonbonded interactions. Herein, we developed one-pot P-heteroannulation via palladium-catalyzed dual P—C bonds formation and subsequent sulfidation to construct two isomeric diphosphaperylenediimides (cis-5 and trans-5). The unique out-of-plane anisotropic π-framework induced a cumulative anisotropy with a dipole moment of up to 8.82 D for cis-5, leading to distinct supramolecular packing arrangements. Optical and electrochemical characterizations demonstrated that they showed the largest redshifts extending to 574 nm and rather low-lying LUMO levels of −4.41 eV. Furthermore, the introduced P=S moieties endowed these diphosphaperylenediimides with prominent coordination ability towards Ag+, thus the first example of perylene diimide (PDI) core-involved metal-organic coordination polymers (MOCPs) with tunable dimensionality varied from 1D, 2D, to 3D were tactfully achieved. In view of easy accessibility and 2D layered porous structure, thus 2D (trans-5)·(AgOTf) based MOCP showed high crystallinity and good CO2 adsorption capacity with surface area of 112 m2/g. The result opens a span-new avenue for exploring rylene imide-based MOCPs and related properties by integrating P functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stępień M, Gońka E, Żyła M, Sprutta N. Chem Rev, 2017, 117: 3479–3716

    Article  PubMed  Google Scholar 

  2. Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Chem Rev, 2022, 122: 565–788

    Article  CAS  PubMed  Google Scholar 

  3. Wang XY, Yao X, Narita A, Müllen K. Acc Chem Res, 2019, 52: 2491–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang W, Li Y, Wang Z. Chem Soc Rev, 2013, 42: 6113–6127

    Article  CAS  PubMed  Google Scholar 

  5. Takase M, Enkelmann V, Sebastiani D, Baumgarten M, Müllen K. Angew Chem Int Ed, 2007, 46: 5524–5527

    Article  CAS  Google Scholar 

  6. Davis NKS, Thompson AL, Anderson HL. J Am Chem Soc, 2011, 133: 30–31

    Article  CAS  PubMed  Google Scholar 

  7. Wei J, Han B, Guo Q, Shi X, Wang W, Wei N. Angew Chem Int Ed, 2010, 49: 8209–8213

    Article  CAS  Google Scholar 

  8. Ma Z, Winands T, Liang N, Meng D, Jiang W, Doltsinis NL, Wang Z. Sci China Chem, 2020, 63: 208–214

    Article  CAS  Google Scholar 

  9. Jiang W, Li Y, Yue W, Zhen Y, Qu J, Wang Z. Org Lett, 2010, 12: 228–231

    Article  CAS  PubMed  Google Scholar 

  10. Qian H, Liu C, Wang Z, Zhu D. Chem Commun, 2006,: 4587–4589

  11. Jiang W, Zhou Y, Geng H, Jiang S, Yan S, Hu W, Wang Z, Shuai Z, Pei J. J Am Chem Soc, 2011, 133: 1–3

    Article  CAS  PubMed  Google Scholar 

  12. Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG. Angew Chem Int Ed, 2006, 45: 7367–7370

    Article  CAS  Google Scholar 

  13. Wu D, Pisula W, Haberecht MC, Feng X, Müllen K. Org Lett, 2009, 11: 5686–5689

    Article  CAS  PubMed  Google Scholar 

  14. Zhao K, Yao ZF, Wang ZY, Zeng JC, Ding L, Xiong M, Wang JY, Pei J. J Am Chem Soc, 2022, 144: 3091–3098

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Gao Y, Dou C, Liu J. Chin Chem Lett, 2020, 31: 1193–1196

    Article  CAS  Google Scholar 

  16. Hatakeyama T, Hashimoto S, Seki S, Nakamura M. J Am Chem Soc, 2011, 133: 18614–18617

    Article  CAS  PubMed  Google Scholar 

  17. Fu Y, Chang X, Yang H, Dmitrieva E, Gao Y, Ma J, Huang L, Liu J, Lu H, Cheng Z, Du S, Gao HJ, Feng X. Angew Chem Int Ed, 2021, 60: 26115–26121

    Article  CAS  Google Scholar 

  18. Furukawa S, Kobayashi J, Kawashima T. J Am Chem Soc, 2009, 131: 14192–14193

    Article  CAS  PubMed  Google Scholar 

  19. Ma Z, Xiao C, Liu C, Meng D, Jiang W, Wang Z. Org Lett, 2017, 19: 4331–4334

    Article  CAS  PubMed  Google Scholar 

  20. Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S. J Am Chem Soc, 1996, 118: 11974–11975

    Article  CAS  Google Scholar 

  21. Tong M, Cho S, Rogers JT, Schmidt K, Hsu BBY, Moses D, Coffin RC, Kramer EJ, Bazan GC, Heeger AJ. Adv Funct Mater, 2010, 20: 3959–3965

    Article  CAS  Google Scholar 

  22. Duffy MP, Delaunay W, Bouit PA, Hissler M. Chem Soc Rev, 2016, 45: 5296–5310

    Article  CAS  PubMed  Google Scholar 

  23. Baumgartner T. Acc Chem Res, 2014, 47: 1613–1622

    Article  CAS  PubMed  Google Scholar 

  24. Hindenberg P, Busch M, Paul A, Bernhardt M, Gemessy P, Rominger F, Romero-Nieto C. Angew Chem Int Ed, 2018, 57: 15157–15161

    Article  CAS  Google Scholar 

  25. Zhuang Z, Bu F, Luo W, Peng H, Chen S, Hu R, Qin A, Zhao Z, Tang BZ. J Mater Chem C, 2017, 5: 1836–1842

    Article  CAS  Google Scholar 

  26. Park KH, Kim YJ, Lee GB, An TK, Park CE, Kwon SK, Kim YH. Adv Funct Mater, 2015, 25: 3991–3997

    Article  CAS  Google Scholar 

  27. Ren Y, Kan WH, Henderson MA, Bomben PG, Berlinguette CP, Thangadurai V, Baumgartner T. J Am Chem Soc, 2011, 133: 17014–17026

    Article  CAS  PubMed  Google Scholar 

  28. Wu NMW, Ng M, Lam WH, Wong HL, Yam VWW. J Am Chem Soc, 2017, 139: 15142–15150

    Article  CAS  PubMed  Google Scholar 

  29. Reus C, Stolar M, Vanderkley J, Nebauer J, Baumgartner T. J Am Chem Soc, 2015, 137: 11710–11717

    Article  CAS  PubMed  Google Scholar 

  30. Zhuang Z, Dai J, Yu M, Li J, Shen P, Hu R, Lou X, Zhao Z, Tang BZ. Chem Sci, 2020, 11: 3405–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goura J, Chandrasekhar V. Chem Rev, 2015, 115: 6854–6965

    Article  CAS  PubMed  Google Scholar 

  32. Kloda M, Ondrušová S, Lang K, Demel J. Coord Chem Rev, 2021, 433: 213748

    Article  CAS  Google Scholar 

  33. Carson I, Healy MR, Doidge ED, Love JB, Morrison CA, Tasker PA. Coord Chem Rev, 2017, 335: 150–171

    Article  CAS  Google Scholar 

  34. Chen S, Slattum P, Wang C, Zang L. Chem Rev, 2015, 115: 11967–11998

    Article  CAS  PubMed  Google Scholar 

  35. Krieg E, Niazov-Elkan A, Cohen E, Tsarfati Y, Rybtchinski B. Acc Chem Res, 2019, 52: 2634–2646

    Article  CAS  PubMed  Google Scholar 

  36. Würthner F. Chem Commun, 2004,: 1564–1579

  37. Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Angew Chem Int Ed, 2022, 61: e202202532

    CAS  Google Scholar 

  38. Zhang M, Bai Y, Sun C, Xue L, Wang H, Zhang ZG. Sci China Chem, 2022, 65: 462–485

    Article  CAS  Google Scholar 

  39. Bellitto C, Righini G, Gómez-García CJ, Caminiti R, Carbone M, Matassa R, Bauer EM. Inorg Chem, 2012, 51: 7332–7339

    Article  CAS  PubMed  Google Scholar 

  40. Nelson AP, Farha OK, Mulfort KL, Hupp JT. J Am Chem Soc, 2009, 131: 458–460

    Article  CAS  PubMed  Google Scholar 

  41. Boer SA, Nolvachai Y, Kulsing C, McCormick LJ, Hawes CS, Marriott PJ, Turner DR. Chem Eur J, 2014, 20: 11308–11312

    Article  CAS  PubMed  Google Scholar 

  42. Zeng L, Liu T, He C, Shi D, Zhang F, Duan C. J Am Chem Soc, 2016, 138: 3958–3961

    Article  CAS  PubMed  Google Scholar 

  43. Lü B, Chen Y, Li P, Wang B, Müllen K, Yin M. Nat Commun, 2019, 10: 767

    Article  PubMed  PubMed Central  Google Scholar 

  44. Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem Rev, 2016, 116: 962–1052

    Article  PubMed  Google Scholar 

  45. Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J Am Chem Soc, 2016, 138: 375–380

    Article  CAS  PubMed  Google Scholar 

  46. Zeng C, Xiao C, Feng X, Zhang L, Jiang W, Wang Z. Angew Chem Int Ed, 2018, 57: 10933–10937

    Article  CAS  Google Scholar 

  47. Furukawa S, Suda Y, Kobayashi J, Kawashima T, Tada T, Fujii S, Kiguchi M, Saito M. J Am Chem Soc, 2017, 139: 5787–5792

    Article  CAS  PubMed  Google Scholar 

  48. Eisler DJ, Puddephatt RJ. Inorg Chem, 2006, 45: 7295–7305

    Article  CAS  PubMed  Google Scholar 

  49. Cychosz KA, Thommes M. Engineering, 2018, 4: 559–566

    Article  CAS  Google Scholar 

  50. Wu H, Thibault CG, Wang H, Cychosz KA, Thommes M, Li J. Microporous Mesoporous Mater, 2016, 219: 186–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (ZR2019ZD50), the National Natural Science Foundation of China (22005107, 21790361, 22122503), and the China Postdoctoral Science Foundation (2020M682693).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1325_MOESM1_ESM.pdf

Regulating the dimensionality of diphosphaperylenediimide-based polymers by coordinating the out-of-plane anisotropic π-framework toward Ag+

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Liu, Y., Wang, S. et al. Regulating the dimensionality of diphosphaperylenediimide-based polymers by coordinating the out-of-plane anisotropic π-framework toward Ag+. Sci. China Chem. 65, 1741–1748 (2022). https://doi.org/10.1007/s11426-022-1325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1325-1

Keywords

Navigation