Skip to main content
Log in

Theoretical design for zeolite synthesis

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Zeolites, an important class of microporous crystals, have been widely utilized in the fields of catalysis, ion-exchange, separation, and sorption for a long time. In general, zeolites are synthesized in the presence of costly organic templates under hydrothermal conditions by trial-and-error method, which is not only environmentally unfriendly but also labor-intensive. In recent years, novel concepts of design for zeolite synthesis, which are sustainable, cheap, simple, and efficient, have been developed. In this review, the recent advances in design for zeolite synthesis will be briefly summarized, mainly including the design of organic templates for directing the formation of zeolites, design of organotemplate-free route for zeolite synthesis, design of solvent-free strategy for zeolite synthesis, design for novel interzeolite transformation, and targeted control of zeolite morphologies. This review might be helpful for developing sustainable routes for targeted synthesis of zeolites in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chai Y, Dai W, Wu G, Guan N, Li L. Acc Chem Res, 2021, 54: 2894–2904

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Q, Yu J, Corma A. Adv Mater, 2020, 32: 2002927

    Article  Google Scholar 

  3. Dusselier M, Davis ME. Chem Rev, 2018, 118: 5265–5329

    Article  CAS  PubMed  Google Scholar 

  4. Chen LH, Sun MH, Wang Z, Yang W, Xie Z, Su BL. Chem Rev, 2020, 120: 11194–11294

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z, Zhu J, Wakihara T, Okubo T. Inorg Chem Front, 2019, 6: 14–31

    Article  CAS  Google Scholar 

  6. Schwieger W, Machoke AG, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Chem Soc Rev, 2016, 45: 3353–3376

    Article  CAS  PubMed  Google Scholar 

  7. Cundy CS, Cox PA. Chem Rev, 2003, 103: 663–702

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Li J, Dong M, Fan S, Zhao T, Wang J, Fan W. Chem Soc Rev, 2019, 48: 885–907

    Article  CAS  PubMed  Google Scholar 

  9. Shin J, Jo D, Hong SB. Acc Chem Res, 2019, 52: 1419–1427

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Moliner M, Corma A. Angew Chem Int Ed, 2018, 57: 15330–15353

    Article  CAS  Google Scholar 

  11. Barrer RM, Denny PJ. J Chem Soc, 1961: 971–982

  12. Burton AW, Zones SI. Stud Surf Sci Catal, 2007, 168: 137–179

    Article  CAS  Google Scholar 

  13. Jackowski A, Zones SI, Hwang SJ, Burton AW. J Am Chem Soc, 2009, 131: 1092–1100

    Article  CAS  PubMed  Google Scholar 

  14. Moliner M, Rey F, Corma A. Angew Chem Int Ed, 2013, 52: 13880–13889

    Article  CAS  Google Scholar 

  15. Gallego EM, Portilla MT, Paris C, León-Escamilla A, Boronat M, Moliner M, Corma A. Science, 2017, 355: 1051–1054

    Article  CAS  PubMed  Google Scholar 

  16. Li C, Paris C, Martínez-Triguero J, Boronat M, Moliner M, Corma A. Nat Catal, 2018, 1: 547–554

    Article  CAS  Google Scholar 

  17. Schmidt JE, Deem MW, Lew C, Davis TM. Top Catal, 2015, 58: 410–415

    Article  CAS  Google Scholar 

  18. Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA. Chem Soc Rev, 2015, 44: 7044–7111

    Article  CAS  PubMed  Google Scholar 

  19. Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao FS. Chem Commun, 2011, 47: 9789–9791

    Article  CAS  Google Scholar 

  20. Han S, Tang X, Ma Y, Wu Q, Shi J, Li J, Meng X, Zheng A, Xiao FS. J Phys Chem C, 2021, 125: 16343–16349

    Article  CAS  Google Scholar 

  21. Davis TM, Liu AT, Lew CM, Xie D, Benin AI, Elomari S, Zones SI, Deem MW. Chem Mater, 2016, 28: 708–711

    Article  CAS  Google Scholar 

  22. Schmidt JE, Deem MW, Davis ME. Angew Chem Int Ed, 2014, 53: 8372–8374

    Article  CAS  Google Scholar 

  23. Kang JH, McCusker LB, Deem MW, Baerlocher C, Davis ME. Chem Mater, 2021, 33: 1752–1759

    Article  CAS  Google Scholar 

  24. Simancas R, Dari D, Velamazán N, Navarro MT, Cantín A, Jordá JL, Sastre G, Corma A, Rey F. Science, 2010, 330: 1219–1222

    Article  CAS  PubMed  Google Scholar 

  25. Schwalbe-Koda D, Kwon S, Paris C, Bello-Jurado E, Jensen Z, Olivetti E, Willhammar T, Corma A, Román-Leshkov Y, Moliner M, Gómez-Bombarelli R. Science, 2021, 374: 308–315

    Article  CAS  PubMed  Google Scholar 

  26. Leon S, Sastre G. J Phys Chem C, 2022, 126: 2078–2087

    Article  CAS  Google Scholar 

  27. Fickel DW, Lobo RF. J Phys Chem C, 2010, 114: 1633–1640

    Article  CAS  Google Scholar 

  28. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF. Appl Catal B-Environ, 2011, 102: 441–448

    Article  CAS  Google Scholar 

  29. Xie D, McCusker LB, Baerlocher C, Zones SI, Wan W, Zou X. J Am Chem Soc, 2013, 135: 10519–10524

    Article  CAS  PubMed  Google Scholar 

  30. Rojas A, Camblor MA. Angew Chem Int Ed, 2012, 51: 3854–3856

    Article  CAS  Google Scholar 

  31. Rojas A, Arteaga O, Kahr B, Camblor MA. J Am Chem Soc, 2013, 135: 11975–11984

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Wu Q, Meng X, Xiao FS. Engineering, 2017, 3: 567–574

    Article  CAS  Google Scholar 

  33. Xie B, Song J, Ren L, Ji Y, Li J, Xiao FS. Chem Mater, 2008, 20: 4533–4535

    Article  CAS  Google Scholar 

  34. Xie B, Zhang H, Yang C, Liu S, Ren L, Zhang L, Meng X, Yilmaz B, Müller U, Xiao FS. Chem Commun, 2011, 47: 3945–3947

    Article  CAS  Google Scholar 

  35. Yokoi T, Yoshioka M, Imai H, Tatsumi T. Angew Chem Int Ed, 2009, 48: 9884–9887

    Article  CAS  Google Scholar 

  36. Wu Q, Wang X, Meng X, Yang C, Liu Y, Jin Y, Yang Q, Xiao FS. Microporous Mesoporous Mater, 2014, 186: 106–112

    Article  CAS  Google Scholar 

  37. Kubota Y, Itabashi K, Inagaki S, Nishita Y, Komatsu R, Tsuboi Y, Shinoda S, Okubo T. Chem Mater, 2014, 26: 1250–1259

    Article  CAS  Google Scholar 

  38. Kamimura Y, Iyoki K, Elangovan SP, Itabashi K, Shimojima A, Okubo T. Microporous Mesoporous Mater, 2012, 163: 282–290

    Article  CAS  Google Scholar 

  39. Zhang H, Yang C, Zhu L, Meng X, Yilmaz B, Müller U, Feyen M, Xiao FS. Microporous Mesoporous Mater, 2012, 155: 1–7

    Article  Google Scholar 

  40. Wang Y, Li X, Gao Y, Chen F, Liu Z, An J, Xie S, Xu L, Zhu X. Inorg Chem Front, 2021, 8: 2575–2583

    Article  CAS  Google Scholar 

  41. Huang Q, Chen N, Liu L, Arias KS, Iborra S, Yi X, Ma C, Liang W, Zheng A, Zhang C, Hu J, Cai Z, Liu Y, Jiang J, Corma A. Chem Sci, 2020, 11: 12103–12108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu Q, Zhu L, Chu Y, Liu X, Zhang C, Zhang J, Xu H, Xu J, Deng F, Feng Z, Meng X, Xiao FS. Angew Chem Int Ed, 2019, 58: 12138–12142

    Article  CAS  Google Scholar 

  43. Luan H, Lei C, Ma Y, Wu Q, Zhu L, Xu H, Han S, Zhu Q, Liu X, Meng X, Xiao FS. Chin J Catal, 2020, 42: 563–570

    Article  Google Scholar 

  44. Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao FS. J Am Chem Soc, 2012, 134: 15173–15176

    Article  CAS  PubMed  Google Scholar 

  45. Yu X, Meng S, Liu S, Yang Y, Liu B, Zhu L, Cao X. Dalton Trans, 2022, 51: 3845–3848

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Wu Q, Chen C, Pan S, Zhang W, Meng X, Maurer S, Feyen M, Müller U, Xiao FS. Chem Commun, 2015, 51: 16920–16923

    Article  CAS  Google Scholar 

  47. Jin Y, Sun Q, Qi G, Yang C, Xu J, Chen F, Meng X, Deng F, Xiao FS. Angew Chem Int Ed, 2013, 52: 9172–9175

    Article  CAS  Google Scholar 

  48. Jin Y, Chen X, Sun Q, Sheng N, Liu Y, Bian C, Chen F, Meng X, Xiao FS. Chem Eur J, 2014, 20: 17616–17623

    Article  CAS  PubMed  Google Scholar 

  49. Yu G, Chen X, Xue W, Ge L, Wang T, Qiu M, Wei W, Gao P, Sun Y. Chin J Catal, 2020, 41: 622–630

    Article  CAS  Google Scholar 

  50. Wu Q, Liu X, Zhu L, Ding L, Gao P, Wang X, Pan S, Bian C, Meng X, Xu J, Deng F, Maurer S, Müller U, Xiao FS. J Am Chem Soc, 2015, 137: 1052–1055

    Article  CAS  PubMed  Google Scholar 

  51. Wu Q, Liu X, Zhu L, Meng X, Deng F, Fan F, Feng Z, Li C, Maurer S, Feyen M, Müller U, Xiao FS. Chin J Chem, 2017, 35: 572–576

    Article  CAS  Google Scholar 

  52. Rainer DN, Morris RE. Dalton Trans, 2021, 50: 8995–9009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Majano G, Borchardt L, Mitchell S, Valtchev V, Pérez-Ramírez J. Microporous Mesoporous Mater, 2014, 194: 106–114

    Article  CAS  Google Scholar 

  54. Nakazawa N, Ikeda T, Hiyoshi N, Yoshida Y, Han Q, Inagaki S, Kubota Y. J Am Chem Soc, 2017, 139: 7989–7997

    Article  CAS  PubMed  Google Scholar 

  55. Kweon S, An H, Son YM, Park MB, Min HK. Microporous Mesoporous Mater, 2021, 317: 111019

    Article  CAS  Google Scholar 

  56. Boruntea CR, Lundegaard LF, Corma A, Vennestrøm PNR. Microporous Mesoporous Mater, 2019, 278: 105–114

    Article  CAS  Google Scholar 

  57. Goel S, Zones SI, Iglesia E. Chem Mater, 2015, 27: 2056–2066

    Article  CAS  Google Scholar 

  58. Honda K, Yashiki A, Itakura M, Ide Y, Sadakane M, Sano T. Microporous Mesoporous Mater, 2011, 142: 161–167

    Article  CAS  Google Scholar 

  59. Moliner M, Franch C, Palomares E, Grill M, Corma A. Chem Commun, 2012, 48: 8264–8266

    Article  CAS  Google Scholar 

  60. Xu H, Chen W, Wu Q, Lei C, Zhang J, Han S, Zhang L, Zhu Q, Meng X, Dai D, Maurer S, Parvulescu AN, Müller U, Zhang W, Yokoi T, Bao X, Marler B, De Vos DE, Kolb U, Zheng A, Xiao FS. J Mater Chem A, 2019, 7: 4420–4425

    Article  CAS  Google Scholar 

  61. Zhang J, Chu Y, Deng F, Feng Z, Meng X, Xiao FS. Inorg Chem Front, 2020, 7: 2204–2211

    Article  CAS  Google Scholar 

  62. Muraoka K, Sada Y, Shimojima A, Chaikittisilp W, Okubo T. Chem Sci, 2019, 10: 8533–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Verheyen E, Joos L, Van Havenbergh K, Breynaert E, Kasian N, Gobechiya E, Houthoofd K, Martineau C, Hinterstein M, Taulelle F, Van Speybroeck V, Waroquier M, Bals S, Van Tendeloo G, Kirschhock CEA, Martens JA. Nat Mater, 2012, 11: 1059–1064

    Article  CAS  PubMed  Google Scholar 

  64. Roth WJ, Nachtigall P, Morris RE, Wheatley PS, Seymour VR, Ashbrook SE, Chlubná P, Grajciar L, Položij M, Zukal A, Shvets O, Cejka J. Nat Chem, 2013, 5: 628–633

    Article  CAS  PubMed  Google Scholar 

  65. Mazur M, Wheatley PS, Navarro M, Roth WJ, Položij M, Mayoral A, Eliášová P, Nachtigall P, Čejka J, Morris RE. Nat Chem, 2016, 8: 58–62

    Article  CAS  PubMed  Google Scholar 

  66. Zhao X, Zeng S, Zhang X, Deng Q, Li X, Yu W, Zhu K, Xu S, Liu J, Han L. Angew Chem Int Ed, 2021, 60: 13959–13968

    Article  CAS  Google Scholar 

  67. Lee Y, Park MB, Kim PS, Vicente A, Fernandez C, Nam IS, Hong SB. ACS Catal, 2013, 3: 617–621

    Article  CAS  Google Scholar 

  68. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R. Science, 2011, 333: 328–332

    Article  CAS  PubMed  Google Scholar 

  69. Chaikittisilp W, Suzuki Y, Mukti RR, Suzuki T, Sugita K, Itabashi K, Shimojima A, Okubo T. Angew Chem Int Ed, 2013, 52: 3355–3359

    Article  CAS  Google Scholar 

  70. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461: 246–249

    Article  CAS  PubMed  Google Scholar 

  71. Xu D, Ma Y, Jing Z, Han L, Singh B, Feng J, Shen X, Cao F, Oleynikov P, Sun H, Terasaki O, Che S. Nat Commun, 2014, 5: 4262

    Article  CAS  PubMed  Google Scholar 

  72. Dai W, Kouvatas C, Tai W, Wu G, Guan N, Li L, Valtchev V. J Am Chem Soc, 2021, 143: 1993–2004

    Article  CAS  PubMed  Google Scholar 

  73. Jain R, Chawla A, Linares N, Martinez JG, Rimer JD. Adv Mater, 2021, 33: 22

    Article  Google Scholar 

  74. Lu K, Huang J, Ren L, Li C, Guan Y, Hu B, Xu H, Jiang J, Ma Y, Wu P. Angew Chem Int Ed, 2020, 59: 6258–6262

    Article  CAS  Google Scholar 

  75. Margarit VJ, Díaz-Rey MR, Navarro MT, Martínez C, Corma A. Angew Chem Int Ed, 2018, 57: 3459–3463

    Article  CAS  Google Scholar 

  76. Wang X, Ma Y, Wu Q, Wen Y, Xiao FS. Chem Soc Rev, 2022, 51: 2431–2443

    Article  CAS  PubMed  Google Scholar 

  77. Fan W, Snyder MA, Kumar S, Lee PS, Yoo WC, McCormick AV, Lee Penn R, Stein A, Tsapatsis M. Nat Mater, 2008, 7: 984–991

    Article  CAS  PubMed  Google Scholar 

  78. Dai H, Shen Y, Yang T, Lee C, Fu D, Agarwal A, Le TT, Tsapatsis M, Palmer JC, Weckhuysen BM, Dauenhauer PJ, Zou X, Rimer JD. Nat Mater, 2020, 19: 1074–1080

    Article  CAS  PubMed  Google Scholar 

  79. Peng M, Wang ZQ, Huang J, Shen M, Jiang J, Xu H, Ma Y, Hu B, Gong XQ, Wu HH, Wu P. Chem Mater, 2021, 33: 6934–6941

    Article  CAS  Google Scholar 

  80. Ma Y, Tang X, Hu J, Ma Y, Chen W, Liu Z, Han S, Xu C, Wu Q, Zheng A, Zhu L, Meng X, Xiao FS. J Am Chem Soc, 2022, 144: 6270–6277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22172141, 21802121, 21835002, and 92045303), and the Fundamental Research Funds for the Central Universities (2021QNA4028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Shou Xiao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Luan, H. & Xiao, FS. Theoretical design for zeolite synthesis. Sci. China Chem. 65, 1683–1690 (2022). https://doi.org/10.1007/s11426-022-1307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1307-5

Keywords

Navigation