Skip to main content
Log in

Highly efficient electroreduction of CO2 by defect single-atomic Ni-N3 sites anchored on ordered micro-macroporous carbons

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Microporous supports typically fail to fully expose active sites for electrolytes and CO2 molecules, and this usually results in low current density for the electrocatalytic CO2 reduction reaction (CO2RR). To overcome the biggest obstacle and facilitate commercial applications, defective single-atomic Ni-N3 sites anchored to ordered micro-macroporous N-doped carbon (Ni-N/OMC) have been prepared by the pyrolysis of the Ni-ZIF-8@PS (ZIF = zeolitic imidazolate framework) and are intended to provide enhanced CO2RR with a current density at an industrial level. This Ni-ZIF-8@PS is constructed of nickel-based ZIF-8 embedded in the three-dimensional (3D) highly ordered polystyrene spheres (PS). The 3D ordered micro-macroporous architecture of Ni-N/OMC could facilitate the mass transfer of substrates to the accessible defective single-atomic Ni-N3 sites through micropores (0.6 nm) and macropores (∼200 nm) interconnected by 50 nm channels. In a flow cell, Ni-N/OMC exhibits almost 100.0% CO Faraday efficiency (FECO) between −0.2 and −1.1 V vs. RHE and an industrial level CO partial current density of 208 mA cm−2. It has a turnover frequency of 1.5×105 h−1 at −1.1 V vs. RHE in 1 M KOH electrolyte, which exceeds that of most reported nickel-based electrocatalysts. This excellent CO2RR performance for Ni-N/OMC makes it a state-of-the-art electrocatalyst for CO2RR. Theoretical calculations show that the defective Ni-N3 site can lower the energy of *COOH formation compared with that of the Ni-N4 site, thereby accelerating CO2RR. Ni-N/OMC can also be utilized as a cathodic catalyst in Zn-CO2 battery, exhibiting high CO selectivity in the discharge process and excellent stability. This work paves a pathway to rational design of highly efficient electrocatalysts with 3D hierarchically ordered micro-macroporous architecture for CO2RR towards industrial production and commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han J, An P, Liu S, Zhang X, Wang D, Yuan Y, Guo J, Qiu X, Hou K, Shi L, Zhang Y, Zhao S, Long C, Tang Z. Angew Chem Int Ed, 2019, 58: 12711–12716

    Article  CAS  Google Scholar 

  2. Luna PD, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. Science, 2019, 364: eaav3506

    Article  PubMed  CAS  Google Scholar 

  3. Liang J, Wu Q, Huang Y, Cao R. EnergyChem, 2021, 3: 100064

    Article  CAS  Google Scholar 

  4. Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Chem Soc Rev, 2021, 50: 4993–5061

    Article  CAS  PubMed  Google Scholar 

  5. He C, Liang J, Zou YH, Yi JD, Huang YB, Cao R. Natl Sci Rev, 2021,: nwab157

  6. Xiong W, Li H, Wang H, Yi J, You H, Zhang S, Hou Y, Cao M, Zhang T, Cao R. Small, 2020, 16: 2003943

    Article  CAS  Google Scholar 

  7. Huang Q, Liu J, Feng L, Wang Q, Guan W, Dong LZ, Zhang L, Yan LK, Lan YQ, Zhou HC. Natl Sci Rev, 2020, 7: 53–63

    Article  CAS  PubMed  Google Scholar 

  8. He C, Wu QJ, Mao MJ, Zou YH, Liu BT, Huang YB, Cao R. CCS Chem, 2021, 3: 2368–2380

    Article  CAS  Google Scholar 

  9. Yi JD, Xie R, Xie ZL, Chai GL, Liu TF, Chen RP, Huang YB, Cao R. Angew Chem Int Ed, 2020, 59: 23641–23648

    Article  CAS  Google Scholar 

  10. Zhang MD, Si DH, Yi JD, Zhao SS, Huang YB, Cao R. Small, 2020, 16: 2005254

    Article  CAS  Google Scholar 

  11. Wu Q, Xie RK, Mao MJ, Chai GL, Yi JD, Zhao SS, Huang YB, Cao R. ACS Energy Lett, 2020, 5: 1005–1012

    Article  CAS  Google Scholar 

  12. Ren X, Liu S, Li H, Ding J, Liu L, Kuang Z, Li L, Yang H, Bai F, Huang Y, Zhang T, Liu B. Sci China Chem, 2020, 63: 1727–1733

    Article  CAS  Google Scholar 

  13. Zhang K, Liang Z, Zou R. Sci China Chem, 2020, 63: 7–10

    Article  CAS  Google Scholar 

  14. Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Adv Mater, 2018, 31: 1805617

    Article  CAS  Google Scholar 

  15. Hu XM, Daasbjerg K. Nature, 2019, 575: 598–599

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Sun Y, Xie Y. Sci China Chem, 2022, 65: 425–427

    Article  CAS  Google Scholar 

  17. Hu XJ, Li ZX, Xue H, Huang X, Cao R, Liu TF. CCS Chem, 2020, 2: 616–622

    Article  CAS  Google Scholar 

  18. Zhou D, Li X, Shang H, Qin F, Chen W. J Mater Chem A, 2021, 9: 23382–23418

    Article  CAS  Google Scholar 

  19. Zhang MD, Si DH, Yi JD, Yin Q, Huang YB, Cao R. Sci China Chem, 2021, 64: 1332–1339

    Article  CAS  Google Scholar 

  20. Yi JD, Si DH, Xie R, Yin Q, Zhang MD, Wu Q, Chai GL, Huang YB, Cao R. Angew Chem Int Ed, 2021, 60: 17108–17114

    Article  CAS  Google Scholar 

  21. Zhang MD, Yi JD, Huang YB, Cao R. Chin J Struct Chem, 2021, 40: 1213–1222

    CAS  Google Scholar 

  22. Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Sci China Chem, 2021, 64: 1660–1678

    Article  CAS  Google Scholar 

  23. Qu Y, Li Z, Chen W, Lin Y, Yuan T, Yang Z, Zhao C, Wang J, Zhao C, Wang X, Zhou F, Zhuang Z, Wu Y, Li Y. Nat Catal, 2018, 1: 781–786

    Article  CAS  Google Scholar 

  24. Ni W, Gao Y, Lin Y, Ma C, Guo X, Wang S, Zhang S. ACS Catal, 2021, 11: 5212–5221

    Article  CAS  Google Scholar 

  25. Gu K, Wang D, Xie C, Wang T, Huang G, Liu Y, Zou Y, Tao L, Wang S. Angew Chem Int Ed, 2021, 60: 20253–20258

    Article  CAS  Google Scholar 

  26. Hou Y, Huang YB, Liang YL, Chai GL, Yi JD, Zhang T, Zang KT, Luo J, Xu R, Lin H, Zhang SY, Wang HM, Cao R. CCS Chem, 2019, 1: 384–395

    Article  CAS  Google Scholar 

  27. Hou Y, Liang YL, Shi PC, Huang YB, Cao R. Appl Catal B-Environ, 2020, 271: 118929

    Article  CAS  Google Scholar 

  28. Jeong HY, Balamurugan M, Choutipalli VSK, Jeong E, Subramanian V, Sim U, Nam KT. J Mater Chem A, 2019, 7: 10651–10661

    Article  CAS  Google Scholar 

  29. Liu B, Shioyama H, Akita T, Xu Q. J Am Chem Soc, 2008, 130: 5390–5391

    Article  CAS  PubMed  Google Scholar 

  30. Qiao M, Wang Y, Wang Q, Hu G, Mamat X, Zhang S, Wang S. Angew Chem Int Ed, 2019, 59: 2688–2694

    Article  CAS  Google Scholar 

  31. Jiao L, Jiang HL. Chem, 2019, 5: 786–804

    Article  CAS  Google Scholar 

  32. Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y. Angew Chem, 2017, 130: 1962–1966

    Article  Google Scholar 

  33. Liang J, Zhou RF, Chen XM, Tang YH, Qiao SZ. Adv Mater, 2014, 26: 6074–6079

    Article  CAS  PubMed  Google Scholar 

  34. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B. Science, 2018, 359: 206–210

    Article  CAS  PubMed  Google Scholar 

  35. Lin L, Li H, Yan C, Li H, Si R, Li M, Xiao J, Wang G, Bao X. Adv Mater, 2019, 31: 1903470

    Article  CAS  Google Scholar 

  36. Zhu QL, Xia W, Zheng LR, Zou R, Liu Z, Xu Q. ACS Energy Lett, 2017, 2: 504–511

    Article  CAS  Google Scholar 

  37. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y. Nat Catal, 2018, 1: 63–72

    Article  CAS  Google Scholar 

  38. Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M. Angew Chem Int Ed, 2015, 54: 14031–14035

    Article  CAS  Google Scholar 

  39. Yuan CZ, Liang K, Xia XM, Yang ZK, Jiang YF, Zhao T, Lin C, Cheang TY, Zhong SL, Xu AW. Catal Sci Technol, 2019, 9: 3669–3674

    Article  CAS  Google Scholar 

  40. Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X. Nat Commun, 2016, 7: 10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varela AS, Ranjbar Sahraie N, Steinberg J, Ju W, Oh HS, Strasser P. Angew Chem Int Ed, 2015, 54: 10758–10762

    Article  CAS  Google Scholar 

  42. Pan F, Deng W, Justiniano C, Li Y. Appl Catal B-Environ, 2018, 226: 463–472

    Article  CAS  Google Scholar 

  43. Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch JP, Strasser P. Nat Commun, 2015, 6: 8618

    Article  CAS  PubMed  Google Scholar 

  44. Guo Y, Shi W, Yang H, He Q, Zeng Z, Ye JY, He X, Huang R, Wang C, Lin W. J Am Chem Soc, 2019, 141: 17875–17883

    Article  CAS  PubMed  Google Scholar 

  45. Huang G, Yang L, Ma X, Jiang J, Yu SH, Jiang HL. Chem Eur J, 2016, 22: 3470–3477

    Article  CAS  PubMed  Google Scholar 

  46. Li H, Xiao N, Hao M, Song X, Wang Y, Ji Y, Liu C, Li C, Guo Z, Zhang F, Qiu J. Chem Eng J, 2018, 351: 613–621

    Article  CAS  Google Scholar 

  47. Li Y, Wei B, Zhu M, Chen J, Jiang Q, Yang B, Hou Y, Lei L, Li Z, Zhang R, Lu Y. Adv Mater, 2021, 33: 2102212

    Article  CAS  Google Scholar 

  48. Liu W, Wei S, Bai P, Yang C, Xu L. Appl Catal B-Environ, 2021, 299: 120661

    Article  CAS  Google Scholar 

  49. Jiao L, Zhu J, Zhang Y, Yang W, Zhou S, Li A, Xie C, Zheng X, Zhou W, Yu SH, Jiang HL. J Am Chem Soc, 2021, 143: 19417–19424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0208600, 2018YFA0704502), the National Science Foundation of China (21871263, 22071245, 22033008), the Youth Innovation Promotion Association, CAS (Y201850), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ103). We thank the beamline BL14W1 station for XAFS measurements at the Shanghai Synchrotron Radiation Facility, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Biao Huang or Rong Cao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remain entirely with the authors.

Supporting Information

11426_2022_1263_MOESM1_ESM.pdf

Highly Efficient Electroreduction of CO2 by Defect Single-Atomic Ni-N3 Sites Anchored on Ordered Micro-Macroporous Carbons

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, QX., Si, DH., Lin, W. et al. Highly efficient electroreduction of CO2 by defect single-atomic Ni-N3 sites anchored on ordered micro-macroporous carbons. Sci. China Chem. 65, 1584–1593 (2022). https://doi.org/10.1007/s11426-022-1263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1263-5

Navigation