Skip to main content
Log in

Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2022

This article has been updated

Abstract

Charged metal-organic cages generally produce aggregates with various morphologies and different properties through the multiple supramolecular interactions in solution. Herein, a luminescent hexahedral metal-organic cage containing pyrene chromophores is successfully constructed through coordination-driven subcomponent self-assembly. The cage exhibits novel spontaneous aggregation in a dilute solution and time-dependent luminescence enhancement behavior during the subsequent incubation process. Dynamic light scatter (DLS) and transmission electron microscopy (TEM) results prove that the metal-organic cages can form blackberry-like aggregates in methanol dilute solution. Unexpectedly, the luminescent intensity of this system shows a linear increase with the extension of the incubation time in methanol, and this process is also reflected in the change in the quantum yield of the system (2% to over 80% after 5 days incubation time). Ultraviolet-visible (UV-vis), 1H nuclear magnetic resonance (1H NMR) and mass spectra show that metal-organic cages can stably exist in dilute solution. Time-depended DLS and TEM data reveal that the aggregates of metal-organic cages are gradually changed from the dense state to the loose one, which may involve the transition of the system from an energy unstable state to a stable one, probably leading to the unusual time-dependent luminescent property. This unique time-dependent luminescent cage aggregate can be potentially applied as a “supramolecular time meter”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444

    Article  PubMed  CAS  Google Scholar 

  2. Cook TR, Stang PJ. Chem Rev, 2015, 115: 7001–7045

    Article  CAS  PubMed  Google Scholar 

  3. Rizzuto FJ, von Krbek LKS, Nitschke JR. Nat Rev Chem, 2019, 3: 204–222

    Article  Google Scholar 

  4. Howlader P, Zangrando E, Mukherjee PS. J Am Chem Soc, 2020, 142: 9070–9078

    Article  CAS  PubMed  Google Scholar 

  5. Niki K, Tsutsui T, Yamashina M, Akita M, Yoshizawa M. Angew Chem Int Ed, 2020, 59: 10489–10492

    Article  CAS  Google Scholar 

  6. Brown CJ, Toste FD, Bergman RG, Raymond KN. Chem Rev, 2015, 115: 3012–3035

    Article  CAS  PubMed  Google Scholar 

  7. Jin Y, Zhang Q, Zhang Y, Duan C. Chem Soc Rev, 2020, 49: 5561–5600

    Article  CAS  PubMed  Google Scholar 

  8. Jiao J, Li Z, Qiao Z, Li X, Liu Y, Dong J, Jiang J, Cui Y. Nat Commun, 2018, 9: 4423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Therrien B, Süss-Fink G, Govindaswamy P, Renfrew AK, Dyson PJ. Angew Chem Int Ed, 2008, 47: 3773–3776

    Article  CAS  Google Scholar 

  10. Yu G, Cook TR, Li Y, Yan X, Wu D, Shao L, Shen J, Tang G, Huang F, Chen X, Stang PJ. Proc Natl Acad Sci USA, 2016, 113: 13720–13725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang Y, Lian X, Huang Y, Fu G, Xiao Z, Wang Q, Nan B, Pellois JP, Zhou HC. Small, 2018, 14: 1802709

    Article  CAS  Google Scholar 

  12. Wang Z, He L, Liu B, Zhou LP, Cai LX, Hu SJ, Li XZ, Li Z, Chen T, Li X, Sun QF. J Am Chem Soc, 2020, 142: 16409–16419

    Article  CAS  PubMed  Google Scholar 

  13. Neelakandan PP, Jiménez A, Nitschke JR. Chem Sci, 2014, 5: 908–915

    Article  CAS  Google Scholar 

  14. Yamashina M, Tsutsui T, Sei Y, Akita M, Yoshizawa M. Sci Adv, 2019, 5: eaav3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caulder DL, Raymond KN. Acc Chem Res, 1999, 32: 975–982

    Article  CAS  Google Scholar 

  16. Percástegui EG, Ronson TK, Nitschke JR. Chem Rev, 2020, 120: 13480–13544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yamashina M, Tanaka Y, Lavendomme R, Ronson TK, Pittelkow M, Nitschke JR. Nature, 2019, 574: 511–515

    Article  CAS  PubMed  Google Scholar 

  18. Turega S, Cullen W, Whitehead M, Hunter CA, Ward MD. J Am Chem Soc, 2014, 136: 8475–8483

    Article  CAS  PubMed  Google Scholar 

  19. Mosquera J, Szyszko B, Ho SKY, Nitschke JR. Nat Commun, 2017, 8: 14882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou XP, Wu Y, Li D. J Am Chem Soc, 2013, 135: 16062–16065

    Article  CAS  PubMed  Google Scholar 

  21. Luo D, Zhou XP, Li D. Angew Chem Int Ed, 2015, 54: 6190–6195

    Article  CAS  Google Scholar 

  22. Fujita M, Tominaga M, Hori A, Therrien B. Acc Chem Res, 2005, 38: 369–378

    Article  CAS  PubMed  Google Scholar 

  23. Jansze SM, Severin K. Acc Chem Res, 2018, 51: 2139–2147

    Article  CAS  PubMed  Google Scholar 

  24. Tan C, Jiao J, Li Z, Liu Y, Han X, Cui Y. Angew Chem Int Ed, 2018, 57: 2085–2090

    Article  CAS  Google Scholar 

  25. Olenyuk B, Levin MD, Whiteford JA, Shield JE, Stang PJ. J Am Chem Soc, 1999, 121: 10434–10435

    Article  CAS  Google Scholar 

  26. Pasquale S, Sattin S, Escudero-Adán EC, Martínez-Belmonte M, de Mendoza J. Nat Commun, 2012, 3: 785

    Article  PubMed  CAS  Google Scholar 

  27. Bilbeisi RA, Ronson TK, Nitschke JR. Angew Chem Int Ed, 2013, 52: 9027–9030

    Article  CAS  Google Scholar 

  28. Sun QF, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Science, 2010, 328: 1144–1147

    Article  CAS  PubMed  Google Scholar 

  29. Fujita D, Ueda Y, Sato S, Yokoyama H, Mizuno N, Kumasaka T, Fujita M. Chem, 2016, 1: 91–101

    Article  CAS  Google Scholar 

  30. Saha S, Regeni I, Clever GH. Coord Chem Rev, 2018, 374: 1–14

    Article  CAS  Google Scholar 

  31. Zhou XP, Liu J, Zhan SZ, Yang JR, Li D, Ng KM, Sun RWY, Che CM. J Am Chem Soc, 2012, 134: 8042–8045

    Article  CAS  PubMed  Google Scholar 

  32. Luo D, Wang XZ, Yang C, Zhou XP, Li D. J Am Chem Soc, 2018, 140: 118–121

    Article  CAS  PubMed  Google Scholar 

  33. Shao L, Hu X, Sikligar K, Baker GA, Atwood JL. Acc Chem Res, 2021, 54: 3191–3203

    Article  CAS  PubMed  Google Scholar 

  34. Raee E, Yang Y, Liu T. Giant, 2021, 5: 100050

    Article  CAS  Google Scholar 

  35. Fu J, Schlenoff JB. J Am Chem Soc, 2016, 138: 980–990

    Article  CAS  PubMed  Google Scholar 

  36. Li D, Zhang J, Landskron K, Liu T. J Am Chem Soc, 2008, 130: 4226–4227

    Article  CAS  PubMed  Google Scholar 

  37. Li D, Zhou W, Landskron K, Sato S, Kiely CJ, Fujita M, Liu T. Angew Chem Int Ed, 2011, 50: 5182–5187

    Article  CAS  Google Scholar 

  38. Yang Y, Rehak P, Xie TZ, Feng Y, Sun X, Chen J, Li H, Král P, Liu T. ACS Appl Mater Interfaces, 2020, 12: 56310–56318

    Article  CAS  PubMed  Google Scholar 

  39. Sun Y, Yao Y, Wang H, Fu W, Chen C, Saha ML, Zhang M, Datta S, Zhou Z, Yu H, Li X, Stang PJ. J Am Chem Soc, 2018, 140: 12819–12828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun Y, Zhang F, Jiang S, Wang Z, Ni R, Wang H, Zhou W, Li X, Stang PJ. J Am Chem Soc, 2018, 140: 17297–17307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen M, Wang J, Liu D, Jiang Z, Liu Q, Wu T, Liu H, Yu W, Yan J, Wang P. J Am Chem Soc, 2018, 140: 2555–2561

    Article  CAS  PubMed  Google Scholar 

  42. Raee E, Li H, Sun X, Ustriyana P, Luo J, Chen J, Sahai N, Liu T. J Phys Chem B, 2020, 124: 9958–9966

    Article  CAS  PubMed  Google Scholar 

  43. Yoshizawa M, Catti L. Acc Chem Res, 2019, 52: 2392–2404

    Article  CAS  PubMed  Google Scholar 

  44. Jing X, He C, Zhao L, Duan C. Acc Chem Res, 2019, 52: 100–109

    Article  CAS  PubMed  Google Scholar 

  45. Musser AJ, P Neelakandan P, Richter JM, Mori H, Friend RH, Nitschke JR. J Am Chem Soc, 2017, 139: 12050–12059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li XZ, Zhou LP, Yan LL, Yuan DQ, Lin CS, Sun QF. J Am Chem Soc, 2017, 139: 8237–8244

    Article  CAS  PubMed  Google Scholar 

  47. Luo D, Li M, Zhou XP, Li D. Chem Eur J, 2018, 24: 7108–7113

    Article  CAS  PubMed  Google Scholar 

  48. Guo XQ, Zhou LP, Cai LX, Sun QF. Chem Eur J, 2018, 24: 6936–6940

    Article  CAS  PubMed  Google Scholar 

  49. Zhang M, Saha ML, Wang M, Zhou Z, Song B, Lu C, Yan X, Li X, Huang F, Yin S, Stang PJ. J Am Chem Soc, 2017, 139: 5067–5074

    Article  CAS  PubMed  Google Scholar 

  50. Yamashina M, Sartin MM, Sei Y, Akita M, Takeuchi S, Tahara T, Yoshizawa M. J Am Chem Soc, 2015, 137: 9266–9269

    Article  CAS  PubMed  Google Scholar 

  51. Hou Y, Zhang Z, Lu S, Yuan J, Zhu Q, Chen WP, Ling S, Li X, Zheng YZ, Zhu K, Zhang M. J Am Chem Soc, 2020, 142: 18763–18768

    Article  CAS  PubMed  Google Scholar 

  52. Yang D, von Krbek LKS, Yu L, Ronson TK, Thoburn JD, Carpenter JP, Greenfield JL, Howe DJ, Wu B, Nitschke JR. Angew Chem Int Ed, 2021, 60: 4485–4490

    Article  CAS  Google Scholar 

  53. Yamashina M, Akita M, Hasegawa T, Hayashi S, Yoshizawa M. Sci Adv, 2017, 3: e1701126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lu C, Zhang M, Tang D, Yan X, Zhang ZY, Zhou Z, Song B, Wang H, Li X, Yin S, Sepehrpour H, Stang PJ. J Am Chem Soc, 2018, 140: 7674–7680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen LJ, Yang HB. Acc Chem Res, 2018, 51: 2699–2710

    Article  CAS  PubMed  Google Scholar 

  56. Dong J, Pan Y, Wang H, Yang K, Liu L, Qiao Z, Yuan YD, Peh SB, Zhang J, Shi L, Liang H, Han Y, Li X, Jiang J, Liu B, Zhao D. Angew Chem Int Ed, 2020, 59: 10151–10159

    Article  CAS  Google Scholar 

  57. Zhao J, Zhou Z, Li G, Stang PJ, Yan X. Natl Sci Rev, 2021, 8: nwab045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan X, Cook TR, Wang P, Huang F, Stang PJ. Nat Chem, 2015, 7: 342–348

    Article  CAS  PubMed  Google Scholar 

  59. Kleywegt GJ, Jones TA. Acta Crystlogr D Biol Crystlogr, 1994, 50: 178–185

    Article  CAS  Google Scholar 

  60. Takahashi O, Kohno Y, Nishio M. Chem Rev, 2010, 110: 6049–6076

    Article  CAS  PubMed  Google Scholar 

  61. Figueira-Duarte TM, Müllen K. Chem Rev, 2011, 111: 7260–7314

    Article  CAS  PubMed  Google Scholar 

  62. Islam MM, Hu Z, Wang Q, Redshaw C, Feng X. Mater Chem Front, 2019, 3: 762–781

    Article  CAS  Google Scholar 

  63. Wang J, Dang Q, Gong Y, Liao Q, Song G, Li Q, Li Z. CCS Chem, 2021, 3: 274–286

    Article  CAS  Google Scholar 

  64. Saha S, Holzapfel B, Chen YT, Terlinden K, Lill P, Gatsogiannis C, Rehage H, Clever GH. J Am Chem Soc, 2018, 140: 17384–17388

    Article  CAS  PubMed  Google Scholar 

  65. Li H, Xie TZ, Liang Z, Shen Y, Sun X, Yang Y, Liu T. J Phys Chem C, 2019, 123: 23280–23286

    Article  CAS  Google Scholar 

  66. Claessens CG, Stoddart JF. J Phys Org Chem, 1997, 10: 254–272

    Article  CAS  Google Scholar 

  67. Huang Z, Jiang T, Wang J, Ma X, Tian H. Angew Chem Int Ed, 2021, 60: 2855–2860

    Article  CAS  Google Scholar 

  68. Zhang J, Liu Q, Wu W, Peng J, Zhang H, Song F, He B, Wang X, Sung HHY, Chen M, Li BS, Liu SH, Lam JWY, Tang BZ. ACS Nano, 2019, 13: 3618–3628

    Article  CAS  PubMed  Google Scholar 

  69. Nishino K, Yamamoto H, Ochi J, Tanaka K, Chujo Y. Chem Asian J, 2019, 14: 1577–1581

    Article  CAS  PubMed  Google Scholar 

  70. Fujiki M, Yoshida K, Suzuki N, Rahim NAA, Jalil JA. J Photochem Photobiol A-Chem, 2016, 331: 120–129

    Article  CAS  Google Scholar 

  71. Fujiki M, Yoshimoto S. Mater Chem Front, 2017, 1: 1773–1785

    Article  CAS  Google Scholar 

  72. Zhang C, Yin AX, Jiang R, Rong J, Dong L, Zhao T, Sun LD, Wang J, Chen X, Yan CH. ACS Nano, 2013, 7: 4561–4568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Major Project of Basic and Applied Research (2019B030302009), the National Natural Science Foundation of China (22171106, 21731002, 21975104, 21871172), the Guangzhou Science and Technology Program (202002030411), and Jinan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Zhou.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1245_MOESM1_ESM.pdf

Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement

Appendix

Supplementary material, approximately 9.56 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Wu, LX., Zhang, Y. et al. Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement. Sci. China Chem. 65, 1105–1111 (2022). https://doi.org/10.1007/s11426-022-1245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1245-1

Keywords

Navigation