Skip to main content
Log in

Hypervalent iodine-mediated gem-difluorination of vinyl halides enabled by exclusive 1,2-halo migration

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

β-Difluorinated alkyl halides are of significant value in the modular synthesis of gem-difluorinated molecules. An exclusive 1,2-halo migratory gem-difluorination of vinyl halides with in situ-generated PhIF2·HF is described. This protocol provides a general and practical approach towards a wide variety of β-difluorinated alkyl bromides. Both α- and β-bromoalkyl alkenes are suitable substrates, leading to two distinct types of products. The extension of this protocol to vinyl chloride and iodide are also feasible. The synthetic versatility of this method has been highlighted by the late-stage modification of complex small molecules and further transformations of the β-difluorinated alkyl halides to valuable CF2-containing compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected reviews, see: (a) Jeschke P. ChemBioChem, 2004, 5: 570–589

    Article  CAS  Google Scholar 

  2. Shah P, Westwell AD. J Enzyme Inhibit Med Chem, 2007, 22: 527–540

    Article  CAS  Google Scholar 

  3. Hagmann WK. J Med Chem, 2008, 51: 4359–4369

    Article  CAS  PubMed  Google Scholar 

  4. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  CAS  PubMed  Google Scholar 

  5. (e) Meanwell, NA. J Med Chem, 2011, 54, 2529–2591

    Article  CAS  PubMed  Google Scholar 

  6. Liang T, Neumann CN, Ritter T. Angew Chem Int Ed, 2013, 52: 8214–8264

    Article  CAS  Google Scholar 

  7. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J Med Chem, 2015, 58: 8315–8359

    Article  CAS  PubMed  Google Scholar 

  8. Yerien DE, Bonesi S, Postigo A. Org Biomol Chem, 2016, 14: 8398–8427

    Article  CAS  PubMed  Google Scholar 

  9. Mei H, Han J, Klika KD, Izawa K, Sato T, Meanwell NA, Soloshonok VA. Eur J Med Chem, 2020, 186: 111826

    Article  CAS  PubMed  Google Scholar 

  10. Dubowchik GM, Vrudhula VM, Dasgupta B, Ditta J, Chen T, Sheriff S, Sipman K, Witmer M, Tredup J, Vyas DM, Verdoorn TA, Bollini S, Vinitsky A. Org Lett, 2001, 3: 3987–3990

    Article  CAS  PubMed  Google Scholar 

  11. Ye XM, Konradi AW, Smith J, Aubele DL, Garofalo AW, Marugg J, Neitzel ML, Semko CM, Sham HL, Sun M, Truong AP, Wu J, Zhang H, Goldbach E, Sauer JM, Brigham EF, Bova M, Basi GS. Bioorg Med Chem Lett, 2010, 20: 3502–3506

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Q, Ruffoni A, Gianatassio R, Fujiwara Y, Sella E, Shabat D, Baran PS. Angew Chem Int Ed, 2013, 52: 3949–3952

    Article  CAS  Google Scholar 

  13. Meanwell NA. J Med Chem, 2018, 61: 5822–5880

    Article  CAS  PubMed  Google Scholar 

  14. Kitas EA, Galley G, Jakob-Roetne R, Flohr A, Wostl W, Mauser H, Alker AM, Czech C, Ozmen L, David-Pierson P, Reinhardt D, Jacobsen H. Bioorg Med Chem Lett, 2008, 18: 304–308

    Article  CAS  PubMed  Google Scholar 

  15. Bégué JP, Bonnet-Delpon D. J Fluorine Chem, 2006, 127: 992–1012

    Article  Google Scholar 

  16. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432–2506

    Article  CAS  PubMed  Google Scholar 

  17. Erickson JA, McLoughlin JI. J Org Chem, 1995, 60: 1626–1631

    Article  CAS  Google Scholar 

  18. Xu Y, Qian L, Pontsler AV, McIntyre TM, Prestwich GD. Tetrahedron, 2004, 60: 43–49

    Article  CAS  Google Scholar 

  19. Martínez MD, Luna L, Tesio AY, Feresin GE, Durán FJ, Burton G. J Pharmacy Pharmacol, 2016, 68: 233–244

    Article  Google Scholar 

  20. Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J Am Chem Soc, 2017, 139: 9325–9332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zafrani Y, Yeffet D, Sod-Moriah G, Berliner A, Amir D, Marciano D, Gershonov E, Saphier S. J Med Chem, 2017, 60: 797–804

    Article  CAS  PubMed  Google Scholar 

  22. Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S. J Med Chem, 2019, 62: 5628–5637

    Article  CAS  PubMed  Google Scholar 

  23. For selected reviews, see: (a) Pan X, Xia H, Wu J. Org Chem Front, 2016, 3: 1163–1185

    Article  CAS  Google Scholar 

  24. Yerien DE, Barata-Vallejo S, Postigo A. Chem Eur J, 2017, 23: 14676–14701

    Article  CAS  PubMed  Google Scholar 

  25. Feng Z, Xiao YL, Zhang X. Acc Chem Res, 2018, 51: 2264–2278

    Article  CAS  PubMed  Google Scholar 

  26. Hu XS, Yu JS, Zhou J. Chem Commun, 2019, 55: 13638–13648

    Article  CAS  Google Scholar 

  27. Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Org Chem Front, 2020, 7: 2538–2575; For selected recent examples of copper-catalyzed difluoromethylation, see

    Article  CAS  Google Scholar 

  28. Zeng X, Yan W, Zacate SB, Chao TH, Sun X, Cao Z, Bradford KGE, Paeth M, Tyndall SB, Yang K, Kuo TC, Cheng MJ, Liu W. J Am Chem Soc, 2019, 141: 11398–11403

    Article  CAS  PubMed  Google Scholar 

  29. Zeng X, Yan W, Paeth M, Zacate SB, Hong PH, Wang Y, Yang D, Yang K, Yan T, Song C, Cao Z, Cheng MJ, Liu W. J Am Chem Soc, 2019, 141: 19941–19949

    Article  CAS  PubMed  Google Scholar 

  30. Hara S, Nakahigashi J, Ishi-i K, Fukuhara T, Yoneda N. Tetrahedron Lett, 1998, 39: 2589–2592

    Article  CAS  Google Scholar 

  31. For examples of 1,2-difluorination of alkenes, see: (a) Molnár IG, Gilmour R. J Am Chem Soc, 2016, 138: 5004–5007

    Article  PubMed  Google Scholar 

  32. Banik SM, Medley JW, Jacobsen EN. J Am Chem Soc, 2016, 138: 5000–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scheidt F, Schäfer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew Chem Int Ed, 2018, 57: 16431–16435

    Article  CAS  Google Scholar 

  34. Haj MK, Banik SM, Jacobsen EN. Org Lett, 2019, 21: 4919–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doobary S, Sedikides AT, Caldora HP, Poole DL, Lennox AJJ. Angew Chem Int Ed, 2020, 59: 1155–1160

    Article  CAS  Google Scholar 

  36. For examples of 1,1-difluorination of alkenes, see: (a) Ilchenko NO, Tasch BOA, Szabó KJ. Angew Chem Int Ed, 2014, 53: 12897–12901

    Article  CAS  Google Scholar 

  37. Kitamura T, Muta K, Oyamada J. J Org Chem, 2015, 80: 10431–10436

    Article  CAS  PubMed  Google Scholar 

  38. Banik SM, Medley JW, Jacobsen EN. Science, 2016, 353: 51–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ilchenko NO, Szabó KJ. J Fluorine Chem, 2017, 203: 104–109

    Article  CAS  Google Scholar 

  40. Zhao Z, Racicot L, Murphy GK. Angew Chem Int Ed, 2017, 56: 11620–11623

    Article  CAS  Google Scholar 

  41. Kitamura T, Yoshida K, Mizuno S, Miyake A, Oyamada J. J Org Chem, 2018, 83: 14853–14860

    Article  CAS  PubMed  Google Scholar 

  42. Scheidt F, Neufeld J, Schäfer M, Thiehoff C, Gilmour R. Org Lett, 2018, 20: 8073–8076

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Z, To AJ, Murphy GK. Chem Commun, 2019, 55: 14821–14824

    Article  CAS  Google Scholar 

  44. For reviews on iodine(III)-mediated halogenations, see: (a) Kohlhepp SV, Gulder T. Chem Soc Rev, 2016, 45: 6270–6288

    Article  CAS  PubMed  Google Scholar 

  45. Arnold AM, Ulmer A, Gulder T. Chem Eur J, 2016, 22: 8728–8739

    Article  CAS  PubMed  Google Scholar 

  46. Li H, Reddy BRP, Bi X. Org Lett, 2019, 21: 9358–9362

    Article  CAS  PubMed  Google Scholar 

  47. Ning Y, Sivaguru P, Zanoni G, Anderson EA, Bi X. Chem, 2020, 6: 486–496

    Article  CAS  Google Scholar 

  48. For selected recent examples on the introduction of the CF2 moiety into complex molecules using a CF2-X bond, see: (a) Yu YB, He GZ, Zhang X. Angew Chem Int Ed, 2014, 53: 10457–10461

    Article  CAS  Google Scholar 

  49. Nie X, Cheng C, Zhu G. Angew Chem Int Ed, 2017, 56: 1898–1902

    Article  CAS  Google Scholar 

  50. Xiang H, Zhao QL, Xia PJ, Xiao JA, Ye ZP, Xie X, Sheng H, Chen XQ, Yang H. Org Lett, 2018, 20: 1363–1366

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Jui NT. J Am Chem Soc, 2018, 140: 163–166

    Article  PubMed  Google Scholar 

  52. Zhu E, Liu XX, Wang AJ, Mao T, Zhao L, Zhang X, He CY. Chem Commun, 2019, 55: 12259–12262

    Article  CAS  Google Scholar 

  53. Li L, Luo H, Zhao Z, Li Y, Zhou Q, Xu J, Li J, Ma YN. Org Lett, 2019, 21: 9228–9231

    Article  CAS  PubMed  Google Scholar 

  54. Tu HY, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing FL, Chu L. J Am Chem Soc, 2020, jacs.0c03708

  55. Lv WX, Li Q, Li JL, Li Z, Lin E, Tan DH, Cai YH, Fan WX, Wang H. Angew Chem Int Ed, 2018, 57: 16544–16548

    Article  CAS  Google Scholar 

  56. Levin MD, Ovian JM, Read JA, Sigman MS, Jacobsen EN. J Am Chem Soc, 2020, 142: 14831–14837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. CCDC-2031317 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viahttp://www.ccdc.cam.ac.uk/data_request/cif

  58. Sun X, Li X, Song S, Zhu Y, Liang YF, Jiao N. J Am Chem Soc, 2015, 137: 6059–6066

    Article  CAS  PubMed  Google Scholar 

  59. Zhou B, Yan T, Xue XS, Cheng JP. Org Lett, 2016, 18: 6128–6131

    Article  CAS  PubMed  Google Scholar 

  60. Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue XS. J Am Chem Soc, 2018, 140: 15206–15218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21961047, 21901266, 21971261, 22022114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peijun Liu or Honggen Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liao, Y., Tan, X. et al. Hypervalent iodine-mediated gem-difluorination of vinyl halides enabled by exclusive 1,2-halo migration. Sci. China Chem. 64, 999–1003 (2021). https://doi.org/10.1007/s11426-021-9965-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-9965-9

Keywords

Navigation