Skip to main content
Log in

Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Conventional anti-Stokes materials-involved deep photodynamic therapy (dPDT) requires much high-intensity irradiance due to low photosensitization efficiency. Herein, we proposed a “booster effector” approach to construct highly efficient hot band absorption phototherapeutics for low/biosafety power anti-Stokes light-triggered dPDT. Se, as “booster effector”, was introduced into hot band absorption luminophores (HBAs), which not only significantly facilitated intersystem crossing, but also simultaneously enhanced hot band excitation efficiency at v808, as a result successfully enabling excellent photogenerated singlet oxygen capability of HBAs under ultra-low power anti-Stokes excitation (10 mW cm−2in vitro). As far as we know, such low laser power-initiated photosensitization activity has never been reported in the existing anti-Stokes material systems. Importantly, FUC-SeME can self-assemble into uniform nanospheres in water, greatly boosting cellular uptake (>25-fold larger than FUC-Se), and achieve superior cancer-killing effect (808 nm, 10 mW cm−2, 5 min, the half-maximal inhibitory concentration IC50 = 1.36 µM). After further PEGylation with folate-attached polymer, the resultant FUC-SeME@FA can effectively enrich at the tumor (signal-to-background ratio, 10). Under safety irradiation (330 mW cm−2), FUC-SeME@FA effectively inhibits deep-seated tumor progression (the tumor growth inhibition rate, 84%). This work provides a successful paradigm, possibly being more clinically beneficial than conventional anti-Stokes materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li M, Shao Y, Kim JH, Pu Z, Zhao X, Huang H, Xiong T, Kang Y, Li G, Shao K, Fan J, Foley JW, Kim JS, Peng X. J Am Chem Soc, 2020, 142: 5380–5388

    Article  CAS  PubMed  Google Scholar 

  2. Zhao X, Long S, Li M, Cao J, Li Y, Guo L, Sun W, Du J, Fan J, Peng X. J Am Chem Soc, 2020, 142: 1510–1517

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Zhao X, Xiong T, Du J, Sun W, Fan J, Peng X. Sci China Chem, 2021, 64: 808–816

    Article  CAS  Google Scholar 

  4. Xu F, Ge H, Xu N, Yang C, Yao Q, Long S, Sun W, Fan J, Xu X, Peng X. Sci China Chem, 2021, 64: 488–498

    Article  CAS  Google Scholar 

  5. Li J, Pu K. Chem Soc Rev, 2019, 48: 38–71

    Article  CAS  PubMed  Google Scholar 

  6. Liu S, Feng G, Tang BZ, Liu B. Chem Sci, 2021, 12: 6488–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tian R, Sun W, Li M, Long S, Li M, Fan J, Guo L, Peng X. Chem Sci, 2019, 10: 10106–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roy I, Garci A, Beldjoudi Y, Young RM, Pe DJ, Nguyen MT, Das PJ, Wasielewski MR, Stoddart JF. J Am Chem Soc, 2020, 142: 16600–16609

    Article  CAS  PubMed  Google Scholar 

  9. Liu C, Liu B, Zhao J, Di Z, Chen D, Gu Z, Li L, Zhao Y. Angew Chem Int Ed, 2020, 59: 2634–2638

    Article  CAS  Google Scholar 

  10. Liu Y, Meng X, Bu W. Coord Chem Rev, 2019, 379: 82–98

    Article  CAS  Google Scholar 

  11. Fan W, Huang P, Chen X. Chem Soc Rev, 2016, 45: 6488–6519

    Article  CAS  PubMed  Google Scholar 

  12. Shen Y, Shuhendler AJ, Ye D, Xu JJ, Chen HY. Chem Soc Rev, 2016, 45: 6725–6741

    Article  CAS  PubMed  Google Scholar 

  13. Wu L, Liu J, Li P, Tang B, James TD. Chem Soc Rev, 2021, 50: 702–734

    Article  CAS  PubMed  Google Scholar 

  14. Chen B, Wang F. Acc Chem Res, 2020, 53: 358–367

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Liu K, Liu X, Dohnalová K, Gregorkiewicz T, Kong X, Aalders MCG, Buma WJ, Zhang H. J Phys Chem Lett, 2011, 2: 2083–2088

    Article  CAS  Google Scholar 

  16. Li J, Huang J, Ao Y, Li S, Miao Y, Yu Z, Zhu L, Lan X, Zhu Y, Zhang Y, Yang X. ACS Appl Mater Interfaces, 2018, 10: 22985–22996

    Article  CAS  PubMed  Google Scholar 

  17. Yin C, Li X, Wang Y, Liang Y, Zhou S, Zhao P, Lee C-, Fan Q, Huang W. Adv Funct Mater, 2021, 31: 2104650

    Article  CAS  Google Scholar 

  18. Xi D, Xiao M, Cao J, Zhao L, Xu N, Long S, Fan J, Shao K, Sun W, Yan X, Peng X. Adv Mater, 2020, 32: 1907855

    Article  CAS  Google Scholar 

  19. Zhu X, Su Q, Feng W, Li F. Chem Soc Rev, 2017, 46: 1025–1039

    Article  CAS  PubMed  Google Scholar 

  20. Sheik-Bahae M, Epstein RI. Nat Photon, 2007, 1: 693–699

    Article  CAS  Google Scholar 

  21. Dimitriev O, Fedoryak A, Slominskii Y, Smirnova A, Yoshida T. Chem Phys Lett, 2020, 738: 136905

    Article  CAS  Google Scholar 

  22. Liu Y, Su Q, Zou X, Chen M, Feng W, Shi Y, Li F. Chem Commun, 2016, 52: 7466–7469

    Article  CAS  Google Scholar 

  23. Han J, Zhang J, Zhao T, Liu M, Duan P. CCS Chem, 2021, 3: 665–674

    Article  CAS  Google Scholar 

  24. Zhang J, Li D, Chen R, Xiong Q. Nature, 2013, 493: 504–508

    Article  CAS  PubMed  Google Scholar 

  25. Clark JL, Rumbles G. Phys Rev Lett, 1996, 76: 2037–2040

    Article  CAS  PubMed  Google Scholar 

  26. Clark JL, Miller PF, Rumbles G. J Phys Chem A, 1998, 102: 4428–4437

    Article  CAS  Google Scholar 

  27. Kachynski AV, Kuzmin AN, Pudavar HE, Prasad PN. Appl Phys Lett, 2005, 87: 023901

    Article  Google Scholar 

  28. Yang H, Han C, Zhu X, Liu Y, Zhang KY, Liu S, Zhao Q, Li F, Huang W. Adv Funct Mater, 2016, 26: 1945–1953

    Article  CAS  Google Scholar 

  29. Liu Y, Su Q, Chen M, Dong Y, Shi Y, Feng W, Wu ZY, Li F. Adv Mater, 2016, 28: 6625–6630

    Article  CAS  PubMed  Google Scholar 

  30. Pensack RD, Song Y, McCormick TM, Jahnke AA, Hollinger J, Seferos DS, Scholes GD. J Phys Chem B, 2014, 118: 2589–2597

    Article  CAS  PubMed  Google Scholar 

  31. Bartl MH, Scott BJ, Wirnsberger G, Popitsch A, Stucky GD. ChemPhysChem, 2003, 4: 392–395

    Article  CAS  PubMed  Google Scholar 

  32. Jia T, Wang Q, Xu M, Yuan W, Feng W, Li F. Chem Commun, 2021, 57: 1518–1521

    Article  CAS  Google Scholar 

  33. Jain RK, Hu C, Gustafson TK, Elliot SS, Chang MS. J Appl Phys, 1973, 44: 3157–3161

    Article  CAS  Google Scholar 

  34. Kim B, Yeom HR, Yun MH, Kim JY, Yang C. Macromolecules, 2012, 45: 8658–8664

    Article  CAS  Google Scholar 

  35. Kronemeijer AJ, Gili E, Shahid M, Rivnay J, Salleo A, Heeney M, Sirringhaus H. Adv Mater, 2012, 24: 1558–1565

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Masunaga H, Hikima T, Matsumoto H, Mori T, Michinobu T. Macromolecules, 2015, 48: 4012–4023

    Article  CAS  Google Scholar 

  37. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  38. Liu Z, Lu T, Chen Q. Curr Alzheimer Resbon, 2020, 165: 461–467

    CAS  Google Scholar 

  39. Chen X, Li Y, Li S, Gao M, Ren L, Tang BZ. Adv Funct Mater, 2018, 28: 1804362

    Article  Google Scholar 

  40. Noh I, Lee DY, Kim H, Jeong CU, Lee Y, Ahn JO, Hyun H, Park JH, Kim YC. Adv Sci, 2018, 5: 1700481

    Article  Google Scholar 

  41. Zhang T, Li Y, Zheng Z, Ye R, Zhang Y, Kwok RTK, Lam JWY, Tang BZ. J Am Chem Soc, 2019, 141: 5612–5616

    Article  CAS  PubMed  Google Scholar 

  42. Nash GT, Luo T, Lan G, Ni K, Kaufmann M, Lin W. Am Chem Soc, 2021, 143: 2194–2199

    Article  CAS  Google Scholar 

  43. Bian H, Ma D, Zhang X, Xin K, Yang Y, Peng X, Xiao Y. Small, 2021, 17: 2100398

    Article  CAS  Google Scholar 

  44. Zou J, Wang P, Wang Y, Liu G, Zhang Y, Zhang Q, Shao J, Si W, Huang W, Dong X. Chem Sci, 2019, 10: 268–276

    Article  CAS  PubMed  Google Scholar 

  45. Wang Q, Xu J, Geng R, Cai J, Li J, Xie C, Tang W, Shen Q, Huang W, Fan Q. Biomaterials, 2020, 231: 119671

    Article  CAS  PubMed  Google Scholar 

  46. He Z, Zhao L, Zhang Q, Chang M, Li C, Zhang H, Lu Y, Chen Y. Adv Funct Mater, 2020, 30: 1910301

    Article  CAS  Google Scholar 

  47. Chen J, Wen K, Chen H, Jiang S, Wu X, Lv L, Peng A, Zhang S, Huang H. Small, 2020, 16: 2000909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22090011) and the NSFC-Liaoning United Fund (U1908202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Peng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Bian, H., Long, S. et al. Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy. Sci. China Chem. 65, 563–573 (2022). https://doi.org/10.1007/s11426-021-1179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1179-7

Navigation