Skip to main content
Log in

Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive σ-interference

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Molecular rectifier, as a basic function of molecular electronic devices, has attracted extensive attention for the opportunity in constructing sub-nanometer electronic devices. However, tunneling leakage current has a significant contribution as electronic devices shrink in size, which leads to a challenge in fabricating molecular rectifiers at the sub-nanometer scale. Here, we experimentally demonstrate a sub-nanometer molecular rectifier based on the supramolecular junction assembled between water and 1,4-diazabicyclo[2.2.2]octane (DABCO) molecule. The charge transport through DABCO and corresponding supramolecular junctions exhibits destructive σ-interference, ensuring a sharp conductance variation for transmission modulation. The supramolecular interaction between DABCO and water readily introduces the asymmetric electrode-molecule interaction, which combines with the destructive σ-interference to support the sub-nanometer rectification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 116: 4318–4440

    Article  CAS  PubMed  Google Scholar 

  2. Su TA, Neupane M, Steigerwald ML, Venkataraman L, Nuckolls C. Nat Rev Mater, 2016, 1: 16002

    Article  CAS  Google Scholar 

  3. Tao NJ. Nat Nanotech, 2006, 1: 173–181

    Article  CAS  Google Scholar 

  4. Cuevas JC, Scheer E. Molecular Electronics. Singapore: World Scientific, 2017

    Book  Google Scholar 

  5. Aviram A, Ratner MA. Chem Phys Lett, 1974, 29: 277–283

    Article  CAS  Google Scholar 

  6. Martin AS, Sambles JR, Ashwell GJ. Phys Rev Lett, 1993, 70: 218–221

    Article  CAS  PubMed  Google Scholar 

  7. Metzger RM. Chem Rev, 2003, 103: 3803–3834

    Article  CAS  PubMed  Google Scholar 

  8. Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R. Phys Rev Lett, 2002, 89: 086802

    Article  CAS  PubMed  Google Scholar 

  9. Chabinyc ML, Chen X, Holmlin RE, Jacobs H, Skulason H, Frisbie CD, Mujica V, Ratner MA, Rampi MA, Whitesides GM. J Am Chem Soc, 2002, 124: 11730–11736

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Roemer M, Yuan L, Du W, Thompson D, Del Barco E, Nijhuis CA. Nat Nanotech, 2017, 12: 797–803

    Article  CAS  Google Scholar 

  11. Díez-Pérez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N. Nat Chem, 2009, 1: 635–641

    Article  PubMed  CAS  Google Scholar 

  12. Hihath J, Bruot C, Nakamura H, Asai Y, Díez-Pérez I, Lee Y, Yu L, Tao N. ACS Nano, 2011, 5: 8331–8339

    Article  CAS  PubMed  Google Scholar 

  13. Fujii S, Tada T, Komoto Y, Osuga T, Murase T, Fujita M, Kiguchi M. J Am Chem Soc, 2015, 137: 5939–5947

    Article  CAS  PubMed  Google Scholar 

  14. Elbing M, Ochs R, Koentopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M. Proc Natl Acad Sci USA, 2005, 102: 8815–8820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peiris CR, Vogel YB, Le Brun AP, Aragonès AC, Coote ML, Díez-Pérez I, Ciampi S, Darwish N. J Am Chem Soc, 2019, 141: 14788–14797

    Article  CAS  PubMed  Google Scholar 

  16. Datta S, Tian W, Hong S, Reifenberger R, Henderson JI, Kubiak CP. Phys Rev Lett, 1997, 79: 2530–2533

    Article  CAS  Google Scholar 

  17. Batra A, Meisner JS, Darancet P, Chen Q, Steigerwald ML, Nuckolls C, Venkataraman L. Faraday Discuss, 2014, 174: 79–89

    CAS  PubMed  Google Scholar 

  18. Wang K, Zhou J, Hamill JM, Xu B. J Chem Phys, 2014, 141: 054712

    Article  PubMed  CAS  Google Scholar 

  19. Zhang N, Lo WY, Cai Z, Li L, Yu L. Nano Lett, 2017, 17: 308–312

    Article  CAS  PubMed  Google Scholar 

  20. Lo WY, Zhang N, Cai Z, Li L, Yu L. Acc Chem Res, 2016, 49: 1852–1863

    Article  CAS  PubMed  Google Scholar 

  21. Capozzi B, Xia J, Adak O, Dell EJ, Liu ZF, Taylor JC, Neaton JB, Campos LM, Venkataraman L. Nat Nanotech, 2015, 10: 522–527

    Article  CAS  Google Scholar 

  22. Atesci H, Kaliginedi V, Celis Gil JA, Ozawa H, Thijssen JM, Broekmann P, Haga MA, van der Molen SJ. Nat Nanotech, 2018, 13: 117–121

    Article  CAS  Google Scholar 

  23. Chen H, Fraser Stoddart J. Nat Rev Mater, 2021, doi: https://doi.org/10.1038/s41578-021-00302-2

  24. Wu C, Alqahtani A, Sangtarash S, Vezzoli A, Sadeghi H, Robertson CM, Cai C, Lambert CJ, Higgins SJ, Nichols RJ. Nanoscale, 2020, 12: 7914–7920

    Article  CAS  PubMed  Google Scholar 

  25. Pan X, Lawson B, Rustad AM, Kamenetska M. Nano Lett, 2020, 20: 4687–4692

    Article  CAS  PubMed  Google Scholar 

  26. Carini M, Ruiz MP, Usabiaga I, Fernández JA, Cocinero EJ, Melle-Franco M, Diez-Perez I, Mateo-Alonso A. Nat Commun, 2017, 8: 15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garner MH, Li H, Chen Y, Su TA, Shangguan Z, Paley DW, Liu T, Ng F, Li H, Xiao S, Nuckolls C, Venkataraman L, Solomon GC. Nature, 2018, 558: 415–419

    Article  CAS  PubMed  Google Scholar 

  28. Tang C, Chen L, Zhang L, Chen Z, Li G, Yan Z, Lin L, Liu J, Huang L, Ye Y, Hua Y, Shi J, Xia H, Hong W. Angew Chem Int Ed, 2019, 58: 10601–10605

    Article  CAS  Google Scholar 

  29. Guédon CM, Valkenier H, Markussen T, Thygesen KS, Hummelen JC, van der Molen SJ. Nat Nanotech, 2012, 7: 305–309

    Article  CAS  Google Scholar 

  30. Zotti LA, Leary E. Phys Chem Chem Phys, 2020, 22: 5638–5646

    Article  CAS  PubMed  Google Scholar 

  31. Carlotti M, Kovalchuk A, Wächter T, Qiu X, Zharnikov M, Chiechi RC. Nat Commun, 2016, 7: 13904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler DR, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N. Nat Mater, 2019, 18: 357–363

    Article  CAS  PubMed  Google Scholar 

  33. Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W. Nat Mater, 2019, 18: 364–369

    Article  CAS  PubMed  Google Scholar 

  34. Huang B, Liu X, Yuan Y, Hong ZW, Zheng JF, Pei LQ, Shao Y, Li JF, Zhou XS, Chen JZ, Jin S, Mao BW. J Am Chem Soc, 2018, 140: 17685–17690

    Article  CAS  PubMed  Google Scholar 

  35. Xu B, Tao NJ. Science, 2003, 301: 1221–1223

    Article  CAS  PubMed  Google Scholar 

  36. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML. Nature, 2006, 442: 904–907

    Article  CAS  PubMed  Google Scholar 

  37. Pan ZC, Li J, Chen L, Tang Y, Shi J, Liu J, Liao JL, Hong W. Sci China Chem, 2019, 62: 1245–1256

    Article  CAS  Google Scholar 

  38. Wang G, Zeng BF, Zhao SQ, Qian QZ, Hong W, Yang Y. Sci China Chem, 2019, 62: 1333–1345

    Article  CAS  Google Scholar 

  39. Hong W, Li H, Liu SX, Fu Y, Li J, Kaliginedi V, Decurtins S, Wandlowski T. J Am Chem Soc, 2012, 134: 19425–19431

    Article  CAS  PubMed  Google Scholar 

  40. Xiang L, Zhang P, Liu C, He X, Li HB, Li Y, Wang Z, Hihath J, Kim SH, Beratan DN, Tao N. Matter, 2020, 3: 166–179

    Article  PubMed  PubMed Central  Google Scholar 

  41. Magyarkuti A, Adak O, Halbritter A, Venkataraman L. Nanoscale, 2018, 10: 3362–3368

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Zhao X, Zheng J, Huang X, Tang Y, Wang F, Li R, Pi J, Huang C, Wang L, Yang Y, Shi J, Mao BW, Tian ZQ, Bryce MR, Hong W. Chem, 2019, 5: 390–401

    Article  CAS  Google Scholar 

  43. Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L. Nat Nanotech, 2009, 4: 230–234

    Article  CAS  Google Scholar 

  44. Aradhya SV, Frei M, Hybertsen MS, Venkataraman L. Nat Mater, 2012, 11: 872–876

    Article  CAS  PubMed  Google Scholar 

  45. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K. Phys Rev B, 2002, 65: 165401

    Article  CAS  Google Scholar 

  46. Solomon GC, Herrmann C, Hansen T, Mujica V, Ratner MA. Nat Chem, 2010, 2: 223–228

    Article  CAS  PubMed  Google Scholar 

  47. Solomon GC, Herrmann C, Vura-Weis J, Wasielewski MR, Ratner MA. J Am Chem Soc, 2010, 132: 7887–7889

    Article  CAS  PubMed  Google Scholar 

  48. Adak O, Rosenthal E, Meisner J, Andrade EF, Pasupathy AN, Nuckolls C, Hybertsen MS, Venkataraman L. Nano Lett, 2015, 15: 4143–4149

    Article  CAS  PubMed  Google Scholar 

  49. Manrique DZ, Huang C, Baghernejad M, Zhao X, Al-Owaedi OA, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce MR, Lambert CJ. Nat Commun, 2015, 6: 6389

    Article  CAS  PubMed  Google Scholar 

  50. Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B. Nat Chem, 2016, 8: 484–490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673195, 21722305, 21703188, U1705254, 21933012, 31871877), the National Key R&D Program of China (2017YFA0204902), the Fundamental Research Funds for the Central Universities (20720200068), and the Fundamental Research Funds for Xiamen University (20720190002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Tang, Haiping Xia or Wenjing Hong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhou, Y., Chen, Y. et al. Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive σ-interference. Sci. China Chem. 64, 1426–1433 (2021). https://doi.org/10.1007/s11426-021-1086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1086-4

Keywords

Navigation