Skip to main content
Log in

Ratiometric recognition of humidity by a europium-organic framework equipped with quasi-open metal site

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Open metal site (OMS) seated in a luminescent lanthanide (Ln) metal center offers an opportunity for rationally tuning the spectroscopic behavior of lanthanide-organic frameworks aiming for a wide range of sensing applications. However, given the spherical nature of common coordination geometries of trivalent lanthanides and the generally strong Ln-O bonds, the lanthanide based OMS is rarely reported and difficult to be functionalized. We report here a unique europium-organic framework containing abundant quasi-OMS that is protected by an abnormal weak Eu-O bond. These quasi-OMSs offer reversible direct binding sites for water molecules probed by X-ray crystallography, leading to sensitive, visible, and ratiometric luminescent sensing toward humidity and water content in organic solvents. The specific recognition of water based on quasi-luminescent-OMSs gives rise to a superior water detection limit down to 0.0003% v/v, which is one order of magnitude lower than that of Karl Fischer method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung HS, Verwilst P, Kim WY, Kim JS. Chem Soc Rev, 2016, 45: 1242–1256

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki N, Fukazawa A, Nagura K, Saito S, Kitoh-Nishioka H, Yokogawa D, Irle S, Yamaguchi S. Angew Chem Int Ed, 2014, 53: 8231–8235

    Article  CAS  Google Scholar 

  3. Dunning SG, Nuñez AJ, Moore MD, Steiner A, Lynch VM, Sessler JL, Holliday BJ, Humphrey SM. Chem, 2017, 2: 579–589

    Article  CAS  Google Scholar 

  4. Tsamis ED, Avaritsiotis JN. Sens Actuat A-Phys, 2005, 118: 202–211

    Article  CAS  Google Scholar 

  5. Wang A, Fan R, Dong Y, Song Y, Zhou Y, Zheng J, Du X, Xing K, Yang Y. ACS Appl Mater Interfaces, 2017, 9: 15744–15757

    Article  CAS  PubMed  Google Scholar 

  6. Larsson W, Jalbert J, Gilbert R, Cedergren A. Anal Chem, 2003, 75: 1227–1232

    Article  CAS  PubMed  Google Scholar 

  7. Douvali A, Tsipis AC, Eliseeva SV, Petoud S, Papaefstathiou GS, Malliakas CD, Papadas I, Armatas GS, Margiolaki I, Kanatzidis MG, Lazarides T, Manos MJ. Angew Chem Int Ed, 2015, 54: 1651–1656

    Article  CAS  Google Scholar 

  8. Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, Wang S, Shi D, Sun Q, Zhang G. Adv Mater, 2017, 29: 1702076

    Article  Google Scholar 

  9. Chen L, Ye JW, Wang HP, Pan M, Yin SY, Wei ZW, Zhang LY, Wu K, Fan YN, Su CY. Nat Commun, 2017, 8: 15985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen DM, Zhang NN, Liu CS, Du M. ACS Appl Mater Interfaces, 2017, 9: 24671–24677

    Article  CAS  PubMed  Google Scholar 

  11. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR. Chem Rev, 2012, 112: 724–781

    Article  CAS  PubMed  Google Scholar 

  12. Makal TA, Li JR, Lu W, Zhou HC. Chem Soc Rev, 2012, 41: 7761–7779

    Article  CAS  PubMed  Google Scholar 

  13. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J. J Mater Chem, 2006, 16: 626–636

    Article  CAS  Google Scholar 

  14. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen SBT, Hupp JT. Chem Soc Rev, 2009, 38: 1450–1459

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Chem Soc Rev, 2018, 47: 2322–2356

    Article  CAS  PubMed  Google Scholar 

  16. Khan NA, Hasan Z, Jhung SH. J Hazard Mater, 2013, 244–245: 444–456

    Article  PubMed  Google Scholar 

  17. Vellingiri K, Kim KH, Pournara A, Deep A. Prog Mater Sci, 2018, 94: 1–67

    Article  CAS  Google Scholar 

  18. Lei J, Qian R, Ling P, Cui L, Ju H. TrAC Trends Anal Chem, 2014, 58: 71–78

    Article  CAS  Google Scholar 

  19. Rocha J, Carlos LD, Paz FAA, Ananias D. Chem Soc Rev, 2011, 40: 926–940

    Article  CAS  PubMed  Google Scholar 

  20. Cui Y, Zhang J, He H, Qian G. Chem Soc Rev, 2018, 47: 5740–5785

    Article  CAS  PubMed  Google Scholar 

  21. Easun TL, Moreau F, Yan Y, Yang S, Schröder M. Chem Soc Rev, 2017, 46: 239–274

    Article  CAS  PubMed  Google Scholar 

  22. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Angew Chem Int Ed, 2019, 58: 15188–15205

    Article  CAS  Google Scholar 

  23. Fang ZB, Liu TT, Liu J, Jin S, Wu XP, Gong XQ, Wang K, Yin Q, Liu TF, Cao R, Zhou HC. J Am Chem Soc, 2020, 142: 12515–12523

    Article  CAS  PubMed  Google Scholar 

  24. Amoroso AJ, Pope SJA. Chem Soc Rev, 2015, 44: 4723–4742

    Article  CAS  PubMed  Google Scholar 

  25. Ullman AM, Jones CG, Doty FP, Stavila V, Talin AA, Allendorf MD. ACS Appl Mater Interfaces, 2018, 10: 24201–24208

    Article  CAS  PubMed  Google Scholar 

  26. Chen B, Eddaoudi M, Reineke TM, Kampf JW, O’Keeffe M, Yaghi OM. J Am Chem Soc, 2000, 122: 11559–11560

    Article  CAS  Google Scholar 

  27. Wu H, Simmons JM, Srinivas G, Zhou W, Yildirim T. J Phys Chem Lett, 2010, 1: 1946–1951

    Article  CAS  Google Scholar 

  28. Martinez AR, Alvarez S. Chem Eur J, 2009, 15: 7470–7480

    Article  Google Scholar 

  29. Brown MF, Cook BR, Sloan TE. Inorg Chem, 1975, 14: 1273–1278

    Article  CAS  Google Scholar 

  30. Brown MF, Cook BR, Sloan TE. Inorg Chem, 1978, 17: 1563–1568

    Article  CAS  Google Scholar 

  31. Liu W, Wang Y, Bai Z, Li Y, Wang Y, Chen L, Xu L, Diwu J, Chai Z, Wang S. ACS Appl Mater Interfaces, 2017, 9: 16448–16457

    Article  CAS  PubMed  Google Scholar 

  32. Song XZ, Song SY, Zhao SN, Hao ZM, Zhu M, Meng X, Wu LL, Zhang HJ. Adv Funct Mater, 2014, 24: 4034–4041

    Article  CAS  Google Scholar 

  33. Liu W, Dai X, Wang Y, Song L, Zhang L, Zhang D, Xie J, Chen L, Diwu J, Wang J, Chai Z, Wang S. Environ Sci Technol, 2019, 53: 332–341

    Article  CAS  PubMed  Google Scholar 

  34. Du PY, Gu W, Liu X. Inorg Chem, 2016, 55: 7826–7828

    Article  CAS  PubMed  Google Scholar 

  35. Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G, Chen B. J Am Chem Soc, 2012, 134: 3979–3982

    Article  CAS  PubMed  Google Scholar 

  36. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Chem Soc Rev, 2017, 46: 3242–3285

    Article  CAS  PubMed  Google Scholar 

  37. Bünzli JCG. Coord Chem Rev, 2015, 293–294: 19–47

    Article  Google Scholar 

  38. Cui Y, Zou W, Song R, Yu J, Zhang W, Yang Y, Qian G. Chem Commun, 2014, 50: 719–721

    Article  CAS  Google Scholar 

  39. Hao JN, Yan B. Nanoscale, 2016, 8: 12047–12053

    Article  CAS  PubMed  Google Scholar 

  40. Burtch NC, Jasuja H, Walton KS. Chem Rev, 2014, 114: 10575–10612

    Article  CAS  PubMed  Google Scholar 

  41. Sidek HBM, Jo YK, Kim TW, Hwang YK, Chang JS, Hwang SJ. J Phys Chem C, 2017, 121: 15008–15016

    Article  Google Scholar 

  42. Furukawa H, Gándara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM. J Am Chem Soc, 2014, 136: 4369–4381

    Article  CAS  PubMed  Google Scholar 

  43. Luo Y, Li C, Zhu W, Zheng X, Huang Y, Lu Z. Angew Chem Int Ed, 2019, 58: 6280–6284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Taishan Scholars Program (tsqn201909082, tsqn201909087), the National Natural Science Foundation of China (21825601, 21790370, 21790374), the Top Discipline in Materials Science of Shandong Province, and the Natural Science Foundation of Shandong Province (ZR201910290031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Shuao Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xie, J., Sui, Z. et al. Ratiometric recognition of humidity by a europium-organic framework equipped with quasi-open metal site. Sci. China Chem. 64, 1723–1729 (2021). https://doi.org/10.1007/s11426-021-1050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1050-1

Keywords

Navigation