Skip to main content
Log in

Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In small-molecule organic solar cells (SM-OSCs), it remains a big challenge to obtain favorable bulk heterojunction morphology by donor material design. Herein, we design and synthesize three small-molecule donors BPF3T-C4, BPF3T-C6 and BPF3T-C8, with different terminal alkyl chains. Although they possess similar absorption profiles and molecular energy levels, their crystallinity gradually decreases with the chain length of the terminal alkyl chains. After blending with an electron acceptor of BO-4Cl, the crystallinity and packing orientations of these donors are suppressed and changed from edge-on to face-on. Simultaneously, the crystallinity of BO-4Cl gradually weakens with the chain length of the terminal alkyl chain of donor materials. Finally, The BPF3T-C6 with moderate crystallinity exhibits the best phase-separation morphology among these blend films. As a result, the BPF3T-C6:BO-4Cl-based SM-OSC shows an impressive power conversion efficiency of 15.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins SD, Ran NA, Heiber MC, Nguyen TQ. Adv Energy Mater, 2017, 7: 1602242

    Article  Google Scholar 

  2. He C, Hou J. Acta Physico-Chim Sin, 2018, 34: 1202–1210

    Article  CAS  Google Scholar 

  3. Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y. Nat Photon, 2015, 9: 35–41

    Article  CAS  Google Scholar 

  4. Cheng X, Li M, Guo Z, Yu J, Lu G, Bu L, Ye L, Ade H, Chen Y, Geng Y. J Mater Chem A, 2019, 7: 23008–23018

    Article  CAS  Google Scholar 

  5. Liang RZ, Babics M, Seitkhan A, Wang K, Geraghty PB, Lopatin S, Cruciani F, Firdaus Y, Caporuscio M, Jones DJ, Beaujuge PM. Adv Funct Mater, 2017, 28: 1705464

    Article  Google Scholar 

  6. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  7. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  8. Bin H, Yao J, Yang Y, Angunawela I, Sun C, Gao L, Ye L, Qiu B, Xue L, Zhu C, Yang C, Zhang ZG, Ade H, Li Y. Adv Mater, 2018, 30: 1706361

    Article  Google Scholar 

  9. Qiu B, Chen Z, Qin S, Yao J, Huang W, Meng L, Zhu H, Yang YM, Zhang ZG, Li Y. Adv Mater, 2020, 32: 1908373

    Article  CAS  Google Scholar 

  10. Nian L, Kan Y, Gao K, Zhang M, Li N, Zhou G, Jo SB, Shi X, Lin F, Rong Q, Liu F, Zhou G, Jen AKY. Joule, 2020, 4: 2223–2236

    Article  CAS  Google Scholar 

  11. Liang N, Meng D, Ma Z, Kan B, Meng X, Zheng Z, Jiang W, Li Y, Wan X, Hou J, Ma W, Chen Y, Wang Z. Adv Energy Mater, 2017, 7: 1601664

    Article  Google Scholar 

  12. Chang Y, Chang Y, Zhu X, Zhou X, Yang C, Zhang J, Lu K, Sun X, Wei Z. Adv Energy Mater, 2019, 9: 1900190

    Article  Google Scholar 

  13. Wang X, Wang J, Han J, Huang D, Wang P, Zhou L, Yang C, Bao X, Yang R. Nano Energy, 2021, 81: 105612

    Article  CAS  Google Scholar 

  14. Wu Q, Deng D, Zhang J, Zou W, Yang Y, Wang Z, Li H, Zhou R, Lu K, Wei Z. Sci China Chem, 2019, 62: 837–844

    Article  CAS  Google Scholar 

  15. Sun R, Wu Y, Guo J, Luo Z, Yang C, Min J. Sci China Chem, 2020, 63: 1246–1255

    Article  CAS  Google Scholar 

  16. An C, Zheng Z, Hou J. Chem Commun, 2020, 56: 4750–4760

    Article  CAS  Google Scholar 

  17. Wang MH, Xue ZY, Wang ZW, Ning WH, Zhong Y, Liu YN, Zhang CF, Huettner S, Tao YT. Chin J Polym Sci, 2018, 36: 1129–1138

    Article  CAS  Google Scholar 

  18. Zhang S, Hou J. Acta Phys-Chim Sin, 2017, 33: 2327–2338

    CAS  Google Scholar 

  19. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  20. An C, Xin J, Shi L, Ma W, Zhang J, Yao H, Li S, Hou J. Sci China Chem, 2019, 62: 370–377

    Article  CAS  Google Scholar 

  21. Zhang X, Ding Y, Feng H, Gao H, Ke X, Zhang H, Li C, Wan X, Chen Y. Sci China Chem, 2020, 63: 1799–1806

    Article  CAS  Google Scholar 

  22. Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019, 63: 265–271

    Article  Google Scholar 

  23. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  24. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  25. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  26. Ge J, Xie L, Peng R, Fanady B, Huang J, Song W, Yan T, Zhang W, Ge Z. Angew Chem Int Ed, 2020, 59: 2808–2815

    Article  CAS  Google Scholar 

  27. Yue Q, Wu H, Zhou Z, Zhang M, Liu F, Zhu X. Adv Mater, 2019, 31: 1904283

    Article  CAS  Google Scholar 

  28. Chen H, Hu D, Yang Q, Gao J, Fu J, Yang K, He H, Chen S, Kan Z, Duan T, Yang C, Ouyang J, Xiao Z, Sun K, Lu S. Joule, 2019, 3: 3034–3047

    Article  CAS  Google Scholar 

  29. Zhou R, Jiang Z, Yang C, Yu J, Feng J, Adil MA, Deng D, Zou W, Zhang J, Lu K, Ma W, Gao F, Wei Z. Nat Commun, 2019, 10: 5393

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qin J, An C, Zhang J, Ma K, Yang Y, Zhang T, Li S, Xian K, Cui Y, Tang Y, Ma W, Yao H, Zhang S, Xu B, He C, Hou J. Sci China Mater, 2020, 63: 1142–1150

    Article  CAS  Google Scholar 

  31. Tang H, Xu T, Yan C, Gao J, Yin H, Lv J, Singh R, Kumar M, Duan T, Kan Z, Lu S, Li G. Adv Sci, 2019, 6: 1901613

    Article  CAS  Google Scholar 

  32. Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl Sci Rev, 2020, 7: 1239–1246

    Article  CAS  Google Scholar 

  33. Li X, Huang G, Zheng N, Li Y, Kang X, Qiao S, Jiang H, Chen W, Yang R. Sol RRL, 2019, 3: 1900005

    Article  Google Scholar 

  34. Sansom HC, Whitehead GFS, Dyer MS, Zanella M, Manning TD, Pitcher MJ, Whittles TJ, Dhanak VR, Alaria J, Claridge JB, Rosseinsky MJ. Chem Mater, 2017, 29: 1538–1549

    Article  CAS  Google Scholar 

  35. Bredas JL. Mater Horiz, 2014, 1: 17–19

    Article  CAS  Google Scholar 

  36. Li S, Zhan L, Sun C, Zhu H, Zhou G, Yang W, Shi M, Li CZ, Hou J, Li Y, Chen H. J Am Chem Soc, 2019, 141: 3073–3082

    Article  CAS  PubMed  Google Scholar 

  37. Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465–1474

    Article  CAS  PubMed  Google Scholar 

  38. Tang ML, Roberts ME, Locklin JJ, Ling MM, Meng H, Bao Z. Chem Mater, 2006, 18: 6250–6257

    Article  CAS  Google Scholar 

  39. Murgatroyd PN. J Phys D-Appl Phys, 1970, 3: 151–156

    Article  Google Scholar 

  40. Azimi H, Senes A, Scharber MC, Hingerl K, Brabec CJ. Adv Energy Mater, 2011, 1: 1162–1168

    Article  CAS  Google Scholar 

  41. Hu D, Yang Q, Chen H, Wobben F, Le Corre VM, Singh R, Liu T, Ma R, Tang H, Koster LJA, Duan T, Yan H, Kan Z, Xiao Z, Lu S. Energy Environ Sci, 2020, 13: 2134–2141

    Article  CAS  Google Scholar 

  42. Gasparini N, Salvador M, Strohm S, Heumueller T, Levchuk I, Wadsworth A, Bannock JH, de Mello JC, Egelhaaf HJ, Baran D, McCulloch I, Brabec CJ. Adv Energy Mater, 2017, 7: 1700770

    Article  Google Scholar 

  43. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207

    Article  Google Scholar 

  44. Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J. Adv Funct Mater, 2004, 14: 38–44

    Article  CAS  Google Scholar 

  45. Zhang Y, Dang XD, Kuik M, Cowan SR, Zalar P, Kim C, Nguyen TQ. Energy Environ Sci, 2013, 6: 1766–1771

    Article  CAS  Google Scholar 

  46. Boix PP, Guerrero A, Marchesi LF, Garcia-Belmonte G, Bisquert J. Adv Energy Mater, 2011, 1: 1073–1078

    Article  CAS  Google Scholar 

  47. Rand BP, Burk DP, Forrest SR. Phys Rev B, 2007, 75: 115327

    Article  Google Scholar 

  48. Alexander H, Wim B, James G, Eric S, Eliot G, Rick K, Alastair M, Matthew C, Bruce R, Howard P. J Phys-Conf Ser, 2010, 247: 012007

    Article  Google Scholar 

  49. Zhang Y, Liu D, Lau T, Zhan L, Shen D, Fong PWK, Yan C, Zhang S, Lu X, Lee C, Hou J, Chen H, Li G. Adv Funct Mater, 2020, 30: 1910466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21734008, 21835006, 51873217) and Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-201903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunbin An.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Q., An, C., Zhang, T. et al. Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells. Sci. China Chem. 64, 1200–1207 (2021). https://doi.org/10.1007/s11426-021-1026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1026-6

Keywords

Navigation