Skip to main content
Log in

Molecular mechanism of crystal nucleation from solution

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nucleation from solution is fundamental to many natural and industrial processes. The understanding of molecular mechanism of nucleation from solution is conducive to predict crystal structure, control polymorph and design desired crystal materials. In this review, the nucleation theories, including classical nucleation theory (CNT), nonclassical nucleation theory, as well as other new proposed theories, were reprised, and the molecular mechanism of these theories was compared. Then, the molecular process of nucleation, including the current study techniques, the effect of molecular self-assembly in solutions, desolvation process, as well as the properties of solvent and crystal structure on nucleation from solution were summarized. Furthermore, the relationship of molecular conformation in solution and in crystal, and the effect of solute molecular flexibility on nucleation were discussed. Finally, the current challenges and future scopes of crystal nucleation from solution were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myerson AS, Trout BL. Science, 2013, 341: 855–856

    Article  CAS  PubMed  Google Scholar 

  2. Tsarfati Y, Rosenne S, Weissman H, Shimon LJW, Gur D, Palmer BA, Rybtchinski B. ACS Cent Sci, 2018, 4: 1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shahar C, Dutta S, Weissman H, Shimon LJW, Ott H, Rybtchinski B. Angew Chem Int Ed, 2016, 55: 179–182

    Article  CAS  Google Scholar 

  4. Davey RJ. Nature, 2004, 428: 374–375

    Article  CAS  PubMed  Google Scholar 

  5. Davey RJ, Allen K, Blagden N, Cross WI, Lieberman HF, Quayle MJ, Righini S, Seton L, Tiddy GJT. CrystEngComm, 2002, 4: 257–264

    Article  CAS  Google Scholar 

  6. Mirabello G, Ianiro A, Bomans PHH, Yoda T, Arakaki A, Friedrich H, de With G, Sommerdijk NAJM. Nat Mater, 2020, 19: 391–396

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Li M, Lu Z, Wang X, Yang J, Wang Z, Zhang F, Gu C, Zhang W, Sun Y, Sun J, Zhu W, Guo X. Nat Commun, 2019, 10: 3872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chen J, Zhu E, Liu J, Zhang S, Lin Z, Duan X, Heinz H, Huang Y, De Yoreo JJ. Science, 2018, 362: 1135–1139

    Article  CAS  PubMed  Google Scholar 

  9. Edkins K, Cruz-Cabeza AJ. CrystEngComm, 2019, 21: 2031–2033

    Article  CAS  Google Scholar 

  10. Shiau LD. Crystals, 2019, 9: 69

    Article  CAS  Google Scholar 

  11. Cruz-Cabeza AJ, Reutzel-Edens SM, Bernstein J. Chem Soc Rev, 2015, 44: 8619–8635

    Article  CAS  PubMed  Google Scholar 

  12. Nangia A. Acc Chem Res, 2008, 41: 595–604

    Article  CAS  PubMed  Google Scholar 

  13. Cruz-Cabeza AJ, Bernstein J. Chem Rev, 2014, 114: 2170–2191

    Article  CAS  PubMed  Google Scholar 

  14. Davey RJ, Schroeder SLM, ter Horst JH. Angew Chem Int Ed, 2013, 52: 2166–2179

    Article  CAS  Google Scholar 

  15. Van Driessche AES, Van Gerven N, Bomans PHH, Joosten RRM, Friedrich H, Gil-Carton D, Sommerdijk NAJM, Sleutel M. Nature, 2018, 556: 89–94

    Article  CAS  PubMed  Google Scholar 

  16. Vekilov PG. Cryst Growth Des, 2004, 4: 671–685

    Article  CAS  Google Scholar 

  17. Vekilov PG. Cryst Growth Des, 2010, 10: 5007–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vekilov PG. Nat Mater, 2012, 11: 838–840

    Article  CAS  PubMed  Google Scholar 

  19. Gebauer D, Cölfen H. Nano Today, 2011, 6: 564–584

    Article  CAS  Google Scholar 

  20. Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H. Chem Soc Rev, 2014, 43: 2348–2371

    Article  CAS  PubMed  Google Scholar 

  21. Rao A, Cölfen H. Chem Rec, 2018, 18: 1203–1221

    Article  CAS  Google Scholar 

  22. Erdemir D, Lee AY, Myerson AS. Acc Chem Res, 2009, 42: 621–629

    Article  CAS  PubMed  Google Scholar 

  23. Zahn D. ChemPhysChem, 2015, 16: 2069–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gebauer D, Raiteri P, Gale JD, Cölfen H. Am J Sci, 2018, 318: 969–988

    Article  CAS  Google Scholar 

  25. Kashchiev D. J Cryst Growth, 2020, 530: 125300

    Article  CAS  Google Scholar 

  26. Karthika S, Radhakrishnan TK, Kalaichelvi P. Cryst Growth Des, 2016, 16: 6663–6681

    Article  CAS  Google Scholar 

  27. Lee J, Yang J, Kwon SG, Hyeon T. Nat Rev Mater, 2016, 1: 16034

    Article  CAS  Google Scholar 

  28. Jehannin M, Rao A, Cölfen H. J Am Chem Soc, 2019, 141: 10120–10136

    Article  CAS  PubMed  Google Scholar 

  29. Davey RJ, Back KR, Sullivan RA. Faraday Discuss, 2015, 179: 9–26

    Article  CAS  PubMed  Google Scholar 

  30. Sosso GC, Chen J, Cox SJ, Fitzner M, Pedevilla P, Zen A, Michaelides A. Chem Rev, 2016, 116: 7078–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Addicoat M, Adjiman CS, Arhangelskis M, Beran GJO, Bowskill D, Brandenburg JG, Braun DE, Burger V, Cole J, Cruz-Cabeza AJ, Day GM, Deringer VL, Guo R, Hare A, Helfferich J, Hoja J, Iuzzolino L, Jobbins S, Marom N, McKay D, Mitchell JBO, Mohamed S, Neumann M, Nilsson Lill S, Nyman J, Oganov AR, Piaggi P, Price SL, Reutzel-Edens S, Rietveld I, Ruggiero M, Ryder MR, Sastre G, Schön JC, Taylor C, Tkatchenko A, Tsuzuki S, van den Ende J, Woodley SM, Woollam G, Zhu Q. Faraday Discuss, 2018, 211: 325–381

    Article  CAS  PubMed  Google Scholar 

  32. Mullin WJ. Crystallization. Oxford: Butterworth-Heinemann, 2001

    Google Scholar 

  33. Kashchiev D, van Rosmalen GM. Cryst Res Technol, 2003, 38: 555–574

    Article  CAS  Google Scholar 

  34. Tang W, Li S, Gong J. Chem Ind Eng, 2018, 35: 2–11

    Google Scholar 

  35. Schüth F. Curr Opin Solid State Mater Sci, 2001, 5: 389–395

    Article  Google Scholar 

  36. Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk NAJM, Faivre D. Nat Mater, 2013, 12: 310–314

    Article  CAS  PubMed  Google Scholar 

  37. Sleutel M, Lutsko J, Van Driessche AES, Durán-Olivencia MA, Maes D. Nat Commun, 2014, 5: 1–8

    Article  CAS  Google Scholar 

  38. Savage JR, Dinsmore AD. Phys Rev Lett, 2009, 102: 198302

    Article  CAS  PubMed  Google Scholar 

  39. ten Wolde PR, Frenkel D. Science, 1997, 277: 1975–1978

    Article  CAS  PubMed  Google Scholar 

  40. Talanquer V, Oxtoby DW. J Chem Phys, 1998, 109: 223–227

    Article  CAS  Google Scholar 

  41. Gavezzotti A. Chem Eur J, 1999, 5: 567–576

    Article  CAS  Google Scholar 

  42. Warzecha M, Guo R, M. Bhardwaj R, Reutzel-Edens SM, Price SL, Lamprou DA, Florence AJ. Cryst Growth Des, 2017, 17: 6382–6393

    Article  CAS  Google Scholar 

  43. Ito F, Suzuki Y, Fujimori J-i, Sagawa T, Hara M, Seki T, Yasukuni R, De La Chapelle ML. Sci Rep, 2016, 6: 22918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Angew Chem Int Ed, 2019, 58: 19103–19109

    Article  CAS  Google Scholar 

  45. Svärd M, Renuka Devi K, Khamar D, Mealey D, Cheuk D, Zeglinski J, Rasmuson ÅC. Phys Chem Chem Phys, 2018, 20: 15550–15559

    Article  PubMed  Google Scholar 

  46. Xing J, Schweighauser L, Okada S, Harano K, Nakamura E. Nat Commun, 2019, 10: 3608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kellermeier M, Rosenberg R, Moise A, Anders U, Przybylski M, Cölfen H. Faraday Discuss, 2012, 159: 23–45

    Article  CAS  Google Scholar 

  48. Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D. Nat Commun, 2011, 2: 1–8

    Article  CAS  Google Scholar 

  49. Gebauer D, Völkel A, Cölfen H. Science, 2008, 322: 1819–1822

    Article  CAS  PubMed  Google Scholar 

  50. Pouget EM, Bomans PHH, Goos JACM, Frederik PM, de With G, Sommerdijk NAJM. Science, 2009, 323: 1455–1458

    Article  CAS  PubMed  Google Scholar 

  51. Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, Whitelam S, Banfield JF, De Yoreo JJ. Science, 2013, 341: 885–889

    Article  CAS  PubMed  Google Scholar 

  52. Nielsen MH, Aloni S, De Yoreo JJ. Science, 2014, 345: 1158–1162

    Article  CAS  PubMed  Google Scholar 

  53. De Yoreo J. Nat Mater, 2013, 12: 284–285

    Article  CAS  PubMed  Google Scholar 

  54. Smeets PJM, Finney AR, Habraken WJEM, Nudelman F, Friedrich H, Laven J, De Yoreo JJ, Rodger PM, Sommerdijk NAJM. Proc Natl Acad Sci USA, 2017, 114: E7882–E7890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Avaro JT, Wolf SLP, Hauser K, Gebauer D. Angew Chem Int Ed, 2020, 59: 6155–6159

    Article  CAS  Google Scholar 

  56. Li D, Nielsen MH, Lee JRI, Frandsen C, Banfield JF, De Yoreo JJ. Science, 2012, 336: 1014–1018

    Article  CAS  PubMed  Google Scholar 

  57. De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang H, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Cölfen H, Dove PM. Science, 2015, 349: aaa6760

    Article  PubMed  CAS  Google Scholar 

  58. Li H, Chavez AD, Li H, Li H, Dichtel WR, Bredas JL. J Am Chem Soc, 2017, 139: 16310–16318

    Article  CAS  PubMed  Google Scholar 

  59. Li H, Evans AM, Castano I, Strauss MJ, Dichtel WR, Bredas JL. J Am Chem Soc, 2020, 142: 1367–1374

    Article  CAS  PubMed  Google Scholar 

  60. Han Y. Nat Mater, 2020, 19: 377–378

    Article  CAS  PubMed  Google Scholar 

  61. Ou Z, Wang Z, Luo B, Luijten E, Chen Q. Nat Mater, 2020, 19: 450–455

    Article  CAS  PubMed  Google Scholar 

  62. Kelly RC, Rodriguez-Hornedo N. Org Process Res Dev, 2009, 13: 1291–1300

    Article  CAS  Google Scholar 

  63. Rodríguez Ortega PG, Montejo Gámez M, Márquez López F, López González JJ. Chem Asian J, 2016, 11: 1798–1803

    Article  CAS  Google Scholar 

  64. Kulkarni SA, McGarrity ES, Meekes H, ter Horst JH. Chem Commun, 2012, 48: 4983–4985

    Article  CAS  Google Scholar 

  65. Khamar D, Zeglinski J, Mealey D, Rasmuson ÅC. J Am Chem Soc, 2014, 136: 11664–11673

    Article  CAS  PubMed  Google Scholar 

  66. Wang N, Hao H, Lu H, Xu R. CrystEngComm, 2017, 19: 3746–3752

    Article  CAS  Google Scholar 

  67. Wang N, Huang X, Chen L, Yang J, Li X, Ma J, Bao Y, Li F, Yin Q, Hao H. IUCrJ, 2019, 6: 1064–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kovalchuk MV, Blagov AE, Dyakova YA, Gruzinov AY, Marchenkova MA, Peters GS, Pisarevsky YV, Timofeev VI, Volkov VV. Cryst Growth Des, 2016, 16: 1792–1797

    Article  CAS  Google Scholar 

  69. Burton RC, Ferrari ES, Davey RJ, Finney JL, Bowron DT. J Phys Chem B, 2010, 114: 8807–8816

    Article  CAS  PubMed  Google Scholar 

  70. Burton RC, Ferrari ES, Davey RJ, Hopwood J, Quayle MJ, Finney JL, Bowron DT. Cryst Growth Des, 2008, 8: 1559–1565

    Article  CAS  Google Scholar 

  71. Peral F, Gallego E. J Mol Structure, 1997, 415: 187–196

    Article  CAS  Google Scholar 

  72. Di Tommaso D, Watson KL. J Phys Chem A, 2014, 118: 11098–11113

    Article  CAS  PubMed  Google Scholar 

  73. Redivo L, Anastasiadi RM, Pividori M, Berti F, Peressi M, Di Tommaso D, Resmini M. Phys Chem Chem Phys, 2019, 21: 4258–4267

    Article  CAS  PubMed  Google Scholar 

  74. Gaines E, Maisuria K, Di Tommaso D. CrystEngComm, 2016, 18: 2937–2948

    Article  CAS  Google Scholar 

  75. Ectors P, Duchstein P, Zahn D. Cryst Growth Des, 2014, 14: 2972–2976

    Article  CAS  Google Scholar 

  76. Di Tommaso D. CrystEngComm, 2013, 15: 6564–6577

    Article  CAS  Google Scholar 

  77. Parveen S, Davey RJ, Dent G, Pritchard RG. Chem Commun, 2005, 12: 1531–1533

    Article  CAS  Google Scholar 

  78. Chen J, Trout BL. J Phys Chem B, 2008, 112: 7794–7802

    Article  CAS  Google Scholar 

  79. Rosbottom I, Toroz D, Hammond RB, Roberts KJ. CrystEngComm, 2018, 20: 7543–7555

    Article  CAS  Google Scholar 

  80. Tang W, Mo H, Zhang M, Gong J, Wang J, Li T. Cryst Growth Des, 2017, 17: 5028–5033

    Article  CAS  Google Scholar 

  81. Tang W, Zhang M, Mo H, Gong J, Wang J, Li T. Cryst Growth Des, 2017, 17: 5049–5053

    Article  CAS  Google Scholar 

  82. Gaines E, Di Tommaso D. Pharmaceutics, 2018, 10: 12

    Article  PubMed Central  CAS  Google Scholar 

  83. Davey RJ, Blagden N, Righini S, Alison H, Quayle MJ, Fuller S. Cryst Growth Des, 2001, 1: 59–65

    Article  CAS  Google Scholar 

  84. Hunter CA, McCabe JF, Spitaleri A. CrystEngComm, 2012, 14: 7115–7117

    Article  CAS  Google Scholar 

  85. Chiarella RA, Gillon AL, Burton RC, Davey RJ, Sadiq G, Auffret A, Cioffi M, Hunter CA. Faraday Discuss, 2007, 136: 179–193

    Article  CAS  PubMed  Google Scholar 

  86. Chadwick K, Davey RJ, Dent G, Pritchard RG, Hunter CA, Musumeci D. Cryst Growth Des, 2009, 9: 1990–1999

    Article  CAS  Google Scholar 

  87. Zong S, Wang J, Wu H, Liu Q, Hao Y, Huang X, Wu D, Zhou G, Hao H. Acta Crystlogr B Struct Sci Cryst Eng Mater, 2019, 75: 845–854

    Article  CAS  Google Scholar 

  88. Svärd M, Rasmuson ÅC. Cryst Growth Des, 2013, 13: 1140–1152

    Article  CAS  Google Scholar 

  89. Davey RJ, Dent G, Mughal RK, Parveen S. Cryst Growth Des, 2006, 6: 1788–1796

    Article  CAS  Google Scholar 

  90. Hylton RK, Tizzard GJ, Threlfall TL, Ellis AL, Coles SJ, Seaton CC, Schulze E, Lorenz H, Seidel-Morgenstern A, Stein M, Price SL. J Am Chem Soc, 2015, 137: 11095–11104

    Article  CAS  PubMed  Google Scholar 

  91. Du W, Bai L, Gong Y, Zhang L, Xiang J, Wang S, Tang N, Zhu L, Yin Q. Ind Eng Chem Res, 2019, 58: 23284–23293

    Article  CAS  Google Scholar 

  92. Hansen TB, Taris A, Rong BG, Grosso M, Qu H. J Cryst Growth, 2016, 450: 81–90

    Article  CAS  Google Scholar 

  93. Su W, Zhang Y, Liu J, Ma M, Guo P, Liu X, Wang H, Li C. J Pharmaceutical Sci, 2020, 109: 1537–1546

    Article  CAS  Google Scholar 

  94. Liu S, Xu S, Tang W, Yu B, Hou B, Gong J. CrystEngComm, 2018, 20: 7435–7445

    Article  CAS  Google Scholar 

  95. Mattei A, Li T. Pharm Res, 2012, 29: 460–470

    Article  CAS  PubMed  Google Scholar 

  96. Du W, Cruz-Cabeza AJ, Woutersen S, Davey RJ, Yin Q. Chem Sci, 2015, 6: 3515–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tang W, Mo H, Zhang M, Parkin S, Gong J, Wang J, Li T. J Phys Chem B, 2017, 121: 10118–10124

    Article  CAS  PubMed  Google Scholar 

  98. Maggioni GM, Bezinge L, Mazzotti M. Cryst Growth Des, 2017, 17: 6703–6711

    Article  CAS  Google Scholar 

  99. Jones CD, Walker M, Xiao Y, Edkins K. Chem Commun, 2019, 55: 4865–4868

    Article  CAS  Google Scholar 

  100. Wu X, Zheng S, Zhang J, Li W. CrystEngComm, 2019, 21: 3209–3217

    Article  CAS  Google Scholar 

  101. Sullivan RA, Davey RJ, Sadiq G, Dent G, Back KR, ter Horst JH, Toroz D, Hammond RB. Cryst Growth Des, 2014, 14: 2689–2696

    Article  CAS  Google Scholar 

  102. Mealey D, Zeglinski J, Khamar D, Rasmuson ÅC. Faraday Discuss, 2015, 179: 309–328

    Article  CAS  PubMed  Google Scholar 

  103. Chai Y, Wang L, Bao Y, Teng R, Liu Y, Xie C. Cryst Growth Des, 2019, 19: 1660–1667

    Article  CAS  Google Scholar 

  104. Lynch MB, Lawrence SE, Nolan M. J Phys Chem A, 2018, 122: 3301–3312

    Article  CAS  PubMed  Google Scholar 

  105. Zeglinski J, Kuhs M, Khamar D, Hegarty AC, Devi RK, Rasmuson ÅC. Chem Eur J, 2018, 24: 4916–4926

    Article  CAS  PubMed  Google Scholar 

  106. Zeglinski J, Kuhs M, Devi KR, Khamar D, Hegarty AC, Thompson D, Rasmuson ÅC. Cryst Growth Des, 2019, 19: 2037–2049

    Article  CAS  Google Scholar 

  107. Liu Y, Xu S, Zhang X, Tang W, Gong J. Cryst Growth Des, 2019, 19: 7175–7184

    Article  CAS  Google Scholar 

  108. Rexrode NR, Orien J, King MD. J Phys Chem A, 2019, 123: 6937–6947

    Article  CAS  PubMed  Google Scholar 

  109. Cruz-Cabeza AJ, Davey RJ, Sachithananthan SS, Smith R, Tang SK, Vetter T, Xiao Y. Chem Commun, 2017, 53: 7905–7908

    Article  CAS  Google Scholar 

  110. Tang SK, Davey RJ, Sacchi P, Cruz-Cabeza AJ. Chem Sci, 2021, 12: 993–1000

    Article  CAS  Google Scholar 

  111. Uzoh OG, Cruz-Cabeza AJ, Price SL. Cryst Growth Des, 2012, 12: 4230–4239

    Article  CAS  Google Scholar 

  112. Cruz-Cabeza AJ, Liebeschuetz JW, Allen FH. CrystEngComm, 2012, 14: 6797–6811

    Article  CAS  Google Scholar 

  113. Klitou P, Rosbottom I, Simone E. Cryst Growth Des, 2019, 19: 4774–4783

    Article  CAS  Google Scholar 

  114. Puglisi A, Giovannini T, Antonov L, Cappelli C. Phys Chem Chem Phys, 2019, 21: 15504–15514

    Article  CAS  PubMed  Google Scholar 

  115. Luchian R, Vinţeler E, Chiş C, Vasilescu M, Leopold N, Prates Ramalho JP, Chiş V. J Pharmaceutical Sci, 2017, 106: 3564–3573

    Article  CAS  Google Scholar 

  116. Li P, Hwang J, Maier JM, Zhao C, Kaborda DV, Smith MD, Pellechia PJ, Shimizu KD. Cryst Growth Des, 2015, 15: 3561–3564

    Article  CAS  Google Scholar 

  117. Baker CM, Grant GH. Chem Commun, 2006, 13: 1387–1389

    Article  CAS  Google Scholar 

  118. Merrill AT, Tantillo DJ. Magn Reson Chem, 2020, 58: 576–583

    Article  CAS  PubMed  Google Scholar 

  119. Shaikh SR, Gawade RL, Kumar D, Kotmale A, Gonnade RG, Stürzer T. Cryst Growth Des, 2019, 19: 5665–5678

    Article  CAS  Google Scholar 

  120. Francisco CB, Fernandes CS, de Melo UZ, Rittner R, Gauze GF, Basso EA. Beilstein J Org Chem, 2019, 15: 818–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Levi G, Biasin E, Dohn AO, Jónsson H. Phys Chem Chem Phys, 2020, 22: 748–757

    Article  CAS  PubMed  Google Scholar 

  122. Quesada-Moreno MM, Cruz-Cabeza AJ, Avilés-Moreno JR, Cabildo P, Claramunt RM, Alkorta I, Elguero J, Zúñiga FJ, López-González JJ. J Phys Chem A, 2017, 121: 5665–5674

    Article  CAS  PubMed  Google Scholar 

  123. Vojta GM, Etter MC. Cheminform, 1990, 7: 3–11

    Google Scholar 

  124. Thureau P, Carvin I, Ziarelli F, Viel S, Mollica G. Angew Chem Int Ed, 2019, 58: 16047–16051

    Article  CAS  Google Scholar 

  125. Tang N, Wang X, Du W, Zhang L, Xiang J, Wang S, Cheng P, Zhu L, Yin Q. Cryst Growth Des, 2019, 19: 2050–2059

    Article  CAS  Google Scholar 

  126. Back KR, Davey RJ, Grecu T, Hunter CA, Taylor LS. Cryst Growth Des, 2012, 12: 6110–6117

    Article  CAS  Google Scholar 

  127. Kessler H, Zimmermann G, Förster H, Engel J, Oepen G, Sheldrick WS. Angew Chem Int Ed, 1981, 20: 1053–1055

    Article  Google Scholar 

  128. Shi P, Xu S, Du S, Rohani S, Liu S, Tang W, Jia L, Wang J, Gong J. Cryst Growth Des, 2018, 18: 5947–5956

    Article  CAS  Google Scholar 

  129. Li X, Wang N, Yang J, Huang Y, Ji X, Huang X, Wang T, Wang H, Hao H. IUCrJ, 2020, 7: 542–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gawade RL, Chakravarty DK, Kotmale A, Sangtani E, Joshi PV, Ahmed A, Mane MV, Das S, Vanka K, Rajamohanan PR, Puranik VG, Gonnade RG. Cryst Growth Des, 2016, 16: 2416–2428

    Article  CAS  Google Scholar 

  131. Cruz-Cabeza AJ. Acta Crystlogr B Struct Sci Cryst Eng Mater, 2016, 72: 437–438

    Article  CAS  Google Scholar 

  132. Adjiman CS, Brandenburg JG, Braun DE, Cole J, Collins C, Cooper AI, Cruz-Cabeza AJ, Day GM, Dudek M, Hare A, Iuzzolino L, McKay D, Mitchell JBO, Mohamed S, Neelamraju S, Neumann M, Nilsson Lill S, Nyman J, Oganov AR, Price SL, Pulido A, Reutzel-Edens S, Rietveld I, Ruggiero MT, Schön JC, Tsuzuki S, van den Ende J, Woollam G, Zhu Q. Faraday Discuss, 2018, 211: 493–539

    Article  CAS  PubMed  Google Scholar 

  133. Cruz-Cabeza AJ, Davey RJ, Oswald IDH, Ward MR, Sugden IJ. CrystEngComm, 2019, 21: 2034–2042

    Article  CAS  Google Scholar 

  134. Yu L, Reutzel-Edens SM, Mitchell CA. Org Process Res Dev, 2000, 4: 396–402

    Article  CAS  Google Scholar 

  135. Greenwell C, McKinley JL, Zhang P, Zeng Q, Sun G, Li B, Wen S, Beran GJO. Chem Sci, 2020, 11: 2200–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Derdour L, Skliar D. Chem Eng Sci, 2014, 106: 275–292

    Article  CAS  Google Scholar 

  137. Tang W, Sima AD, Gong J, Wang J, Li T. Cryst Growth Des, 2020, 20: 1779–1788

    Article  CAS  Google Scholar 

  138. Roy S, Banerjee R, Nangia A, Kruger GJ. Chem Eur J, 2006, 12: 3777–3788

    Article  CAS  PubMed  Google Scholar 

  139. Goldstein RI, Guo R, Hughes C, Maurer DP, Newhouse TR, Sisto TJ, Conry RR, Price SL, Thamattoor DM. CrystEngComm, 2015, 17: 4877–4882

    Article  CAS  Google Scholar 

  140. Lemmerer A, Báthori NB, Esterhuysen C, Bourne SA, Caira MR. Cryst Growth Des, 2009, 9: 2646–2655

    Article  CAS  Google Scholar 

  141. Yu L, Stephenson GA, Mitchell CA, Bunnell CA, Snorek SV, Bowyer JJ, Borchardt TB, Stowell JG, Byrn SR. J Am Chem Soc, 2000, 122: 585–591

    Article  CAS  Google Scholar 

  142. Threlfall TL, De’Ath RW, Coles SJ. Org Process Res Dev, 2013, 17: 578–584

    Article  CAS  Google Scholar 

  143. Derdour L, Skliar D. Cryst Growth Des, 2012, 12: 5180–5187

    Article  CAS  Google Scholar 

  144. Derdour L, Pack SK, Skliar D, Lai CJ, Kiang S. Chem Eng Sci, 2011, 66: 88–102

    Article  CAS  Google Scholar 

  145. Derdour L, Sivakumar C, Skliar D, Pack SK, Lai CJ, Vernille JP, Kiang S. Cryst Growth Des, 2012, 12: 5188–5196

    Article  CAS  Google Scholar 

  146. Derdour L, Chan EJ. AIChE J, 2015, 61: 4456–4469

    Article  CAS  Google Scholar 

  147. Derdour L, Chan EJ, Skliar D. Processes, 2019, 7: 611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21978201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Wang or Hongxun Hao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, J., Wang, T. et al. Molecular mechanism of crystal nucleation from solution. Sci. China Chem. 64, 1460–1481 (2021). https://doi.org/10.1007/s11426-021-1015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1015-9

Keywords

Navigation