Skip to main content
Log in

A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A sticky-flare gold nanoparticle probe (AuNP-probe) is designed by the combination of locked nucleic acid functionalized silencing of microRNA technology for intracellular microRNA-21 (miRNA-21) sensitively detecting, fluorescence imaging, localizing and silencing. The limit of detection is as low as 0.01 nM. Overexpressed miRNA-21 in cancer cells serves as endogenous drug release stimuli to trigger the release of probe-loaded doxorubicin (Dox), which soon translocates into cell nuclei. This multifunctional Dox-loaded AuNP-probe (Dox-AuNP-probe) could induce cancer cell apoptosis effectively through the synergistic effect of gene silencing and chemotherapy. This Dox-AuNP-probe exhibits superior drug potency compared to free Dox molecules, with a cell inhibition rate of 57% (but only 20% for Dox) to wild-type cancer cells and 30% (but 0% for Dox) to drug-resistent cancer cells after 72 h, and this strategy not only has the function of sensing, but also can effectively bypass drug resistance. In MCF-7 xenograft tumor-bearing mice, the Dox-AuNP-probes show greater inhibition for tumor tissues than miRNA-21 targeted AuNP-probes (Targeting-AuNP-probe) or free Dox molecules. Therefore, the Dox-AuNP-probe represents a promising nanotheranostic platform for future applications in cancer molecular imaging and therapy, especially providing a potential strategy to treat resistant cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. Cell, 1993, 75: 843–854

    Article  CAS  PubMed  Google Scholar 

  2. Chan JA, Krichevsky AM, Kosik KS. Cancer Res, 2005, 65: 6029–6033

    Article  CAS  PubMed  Google Scholar 

  3. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ. Nature, 2015, 518: 107–110

    Article  CAS  PubMed  Google Scholar 

  4. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW, Weinberg RA. Nat Biotechnol, 2010, 28: 341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Nature, 2005, 438: 685–689

    Article  PubMed  Google Scholar 

  6. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S. Nat Genet, 2011, 43: 371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fabani MM, Gait MJ. RNA, 2008, 14: 336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nasevicius A, Ekker SC. Nat Genet, 2000, 26: 216–220

    Article  CAS  PubMed  Google Scholar 

  9. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, King PD, Weis SM, Cheresh DA. Nat Med, 2010, 16: 909–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh N, Agrawal A, Leung AKL, Sharp PA, Bhatia SN. J Am Chem Soc, 2010, 132: 8241–8243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Q, Zhang G, Wu F, Fan S, Yu S, Hong M. J Liaocheng Univ (Nat Sci Ed), 2021, 34: 42–48

    Google Scholar 

  12. Conde J, Edelman ER, Artzi N. Adv Drug Deliver Rev, 2015, 81: 169–183

    Article  CAS  Google Scholar 

  13. Li H, Mu Y, Lu J, Wei W, Wan Y, Liu S. Anal Chem, 2014, 86: 3602–3609

    Article  CAS  PubMed  Google Scholar 

  14. Hao L, Patel PC, Alhasan AH, Giljohann DA, Mirkin CA. Small, 2011, 7: 3158–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tu Y, Wu P, Zhang H, Cai C. Chem Commun, 2012, 48: 10718–10720

    Article  CAS  Google Scholar 

  16. Choi CKK, Li J, Wei K, Xu YJ, Ho LWC, Zhu M, To KKW, Choi CHJ, Bian L. J Am Chem Soc, 2015, 137: 7337–7346

    Article  CAS  PubMed  Google Scholar 

  17. Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA. J Am Chem Soc, 2007, 129: 15477–15479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prigodich AE, Seferos DS, Massich MD, Giljohann DA, Lane BC, Mirkin CA. ACS Nano, 2009, 3: 2147–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Briley WE, Bondy MH, Randeria PS, Dupper TJ, Mirkin CA. Proc Natl Acad Sci USA, 2015, 112: 9591–9595

    Article  CAS  PubMed  Google Scholar 

  20. Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W. Mol Cancer Ther, 2008, 7: 1–9

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Zhu X, Gu J, Hu H, Dong D, Yao J, Lin C, Fei J. Hematology, 2010, 15: 215–221

    Article  PubMed  Google Scholar 

  22. Wang ZX, Lu BB, Wang H, Cheng ZX, Yin YM. Arch Med Res, 2011, 42: 281–290

    Article  CAS  PubMed  Google Scholar 

  23. Yang F, Zhang TT, Li SS, Song P, Zhang K, Guan QY, Kang B, Xu JJ, Chen HY. Anal Chem, 2017, 89: 10239–10247

    Article  CAS  PubMed  Google Scholar 

  24. Luo X, Li Z, Wang G, He X, Shen X, Sun Q, Wang L, Yue R, Ma N. ACS Appl Mater Interfaces, 2017, 9: 33624–33631

    Article  CAS  PubMed  Google Scholar 

  25. Zhang P, He Z, Wang C, Chen J, Zhao J, Zhu X, Li CZ, Min Q, Zhu JJ. ACS Nano, 2015, 9: 789–798

    Article  CAS  PubMed  Google Scholar 

  26. Bose RJC, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau K, Bermudez A, Habte F, Pitteri SJ, Sinclair R, Willmann JK, Massoud TF, Gambhir SS, Paulmurugan R. ACS Nano, 2018, 12: 10817–10832

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ma Y, Wang Z, Zhang M, Han Z, Chen D, Zhu Q, Gao W, Qian Z, Gu Y. Angew Chem Int Ed, 2016, 55: 3304–3308

    Article  CAS  Google Scholar 

  28. Wu Q, Liu Z, Su L, Han G, Liu R, Zhao J, Zhao T, Jiang C, Zhang Z. Nanoscale, 2018, 10: 9386–9392

    Article  CAS  PubMed  Google Scholar 

  29. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G. Anal Chem, 2000, 72: 5535–5541

    Article  CAS  PubMed  Google Scholar 

  30. Shi Z, Zhang J, Qian X, Han L, Zhang K, Chen L, Liu J, Ren Y, Yang M, Zhang A, Pu P, Kang C. Cancer Res, 2013, 73: 5519–5531

    Article  CAS  PubMed  Google Scholar 

  31. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. Oncogene, 2007, 26: 2799–2803

    Article  CAS  PubMed  Google Scholar 

  32. Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A. Angew Chem Int Ed, 2008, 47: 7482–7484

    Article  CAS  Google Scholar 

  33. Hong M, Sun H, Xu L, Yue Q, Shen G, Li M, Tang B, Li CZ. Anal Chim Acta, 2018, 1021: 129–139

    Article  CAS  PubMed  Google Scholar 

  34. Xiao Z, Ji C, Shi J, Pridgen EM, Frieder J, Wu J, Farokhzad OC. Angew Chem Int Ed, 2012, 51: 11853–11857

    Article  CAS  Google Scholar 

  35. Qiao G, Zhuo L, Gao Y, Yu L, Li N, Tang B. Chem Commun, 2011, 47: 7458

    Article  CAS  Google Scholar 

  36. Hou T, Xu N, Wang W, Ge L, Li F. Anal Chem, 2018, 90: 9591–9597

    Article  CAS  PubMed  Google Scholar 

  37. Wang D, Xu Z, Yu H, Chen X, Feng B, Cui Z, Lin B, Yin Q, Zhang Z, Chen C, Wang J, Zhang W, Li Y. Biomaterials, 2014, 35: 8374–8384

    Article  CAS  PubMed  Google Scholar 

  38. Fan P, Suri AK, Fiala R, Live D, Patel DJ. J Mol Biol, 1996, 258: 480–500

    Article  CAS  PubMed  Google Scholar 

  39. Hong L, Han Y, Zhang Y, Zhang H, Zhao Q, Wu K, Fan D. Expert Opin Ther Targets, 2013, 17: 1073–1080

    Article  CAS  PubMed  Google Scholar 

  40. Naro Y, Ankenbruck N, Thomas M, Tivon Y, Connelly CM, Gardner L, Deiters A. J Med Chem, 2018, 61: 5900–5909

    Article  CAS  PubMed  Google Scholar 

  41. Keizer HG, Pinedo HM, Schuurhuis GJ, Joenje H. Pharmacol Ther, 1990, 47: 219–231

    Article  CAS  PubMed  Google Scholar 

  42. Cutts SM, Nudelman A, Rephaeli A, Phillips DR. IUBMB Life (Int Union Biochem Mol Biol-Life), 2005, 57: 73–81

    Article  CAS  Google Scholar 

  43. Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, Zhong Z. J Control Release, 2015, 205: 144–154

    Article  CAS  PubMed  Google Scholar 

  44. Fathy Abd-Ellatef GE, Gazzano E, Chirio D, Ragab Hamed A, Belisario DC, Zuddas C, Peira E, Rolando B, Kopecka J, Assem Said Marie M, Sapino S, Ramadan Fahmy S, Gallarate M, Zaki AbdelHamid AH, Riganti C. Pharmaceutics, 2020, 12: 96

    Article  PubMed Central  Google Scholar 

  45. Yang Q, Li C, Yu S, Fan S, Wang Y, Hong M. Prog Chem, 2021, doi: https://doi.org/10.7536/PC200956

  46. Wang S, Liu X, Chen S, Liu Z, Zhang X, Liang XJ, Li L. ACS Nano, 2018, 13: 274–283

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2015BM024), “Shandong Province Tai-Shan Program”, China Scholarship Council (CSC) scholarship to Dr. Hong, and the National Natural Science Foundation of China (21729501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Hong or Weihong Tan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

11426_2020_9973_MOESM1_ESM.pdf

A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, M., Sun, H., Yang, Q. et al. A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy. Sci. China Chem. 64, 1009–1019 (2021). https://doi.org/10.1007/s11426-020-9973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9973-9

Keywords

Navigation