Skip to main content
Log in

Fully automated sample treatment method for high throughput proteome analysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2022

This article has been updated

Abstract

The bottom-up strategy for proteome analysis typically employs a multistep sample preparation workflow that suffers from being time-consuming and sample loss or contamination caused by the off-line manual operation. Herein, we developed a hollow fibre membrane (HFM)-aided fully automated sample treatment (FAST) method. Due to the confinement effects of HFMs and the immobilized enzymatic reactor, the proteome samples could be denatured, reduced, desalted and digested within 8–20 min via the one-stop service. This method also showed superiority in trace sample analysis. In one and half hours, we could identify about 1,600 protein groups for 500 HeLa cells as the starting materials, 1.5–8 times more than those obtained by previously reported methods. Through the on-line combination of FAST with nano-liquid chromatography-electrospray ionization tandem mass spectrometry (nanoLC-ESI-MS/MS), we further established a fully integrated platform for label-free quantification of proteome with high reproducibility and precision. Collectively, FAST presented here represents a major advance in the high throughput sample treatment and quantitative analysis of proteomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, Clauser KR, Clauss TR, Shah P, Gillette MA, Petyuk VA, Thomas SN, Mani DR, Mundt F, Moore RJ, Hu Y, Zhao R, Schnaubelt M, Keshishian H, Monroe ME, Zhang Z, Udeshi ND, Mani D, Davies SR, Townsend RR, Chan DW, Smith RD, Zhang H, Liu T, Carr SA. Nat Protoc, 2018, 13: 1632–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen N, Liu J, Qiao Z, Liu Y, Yang Y, Jiang C, Wang X, Wang C. Chem Sci, 2018, 9: 2826–2830

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang Z, Hebert AS, Westphall MS, Qu Y, Coon JJ, Dovichi NJ. Anal Chem, 2018, 90: 12090–12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shen S, An B, Wang X, Hilchey SP, Li J, Cao J, Tian Y, Hu C, Jin L, Ng A, Tu C, Qu M, Zand MS, Qu J. Anal Chem, 2018, 90: 10350–10359

    Article  CAS  PubMed  Google Scholar 

  5. Holfeld A, Valdés A, Malmström PU, Segersten U, Lind SB. Anal Chem, 2018, 90: 5841–5849

    Article  CAS  PubMed  Google Scholar 

  6. Wu X, Xiong E, Wang W, Scali M, Cresti M. Nat Protoc, 2014, 9: 362–374

    Article  CAS  PubMed  Google Scholar 

  7. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Nat Methods, 2009, 6: 359–362

    Article  PubMed  CAS  Google Scholar 

  8. Wisniewski JR, Ostasiewicz P, Mann M. J Proteome Res, 2011, 10: 3040–3049

    Article  CAS  PubMed  Google Scholar 

  9. Olkowicz M, Jablonska P, Rogowski J, Smolenski RT. Talanta, 2018, 182: 492–499

    Article  CAS  PubMed  Google Scholar 

  10. Yu Y, Bekele S, Pieper R. J Proteom, 2017, 166: 1–7

    Article  CAS  Google Scholar 

  11. Doellinger J, Schneider A, Hoeller M, Lasch P. Mol Cell Proteom, 2020, 19: 209–222

    Article  CAS  Google Scholar 

  12. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, Shukla AK, Petyuk VA, Campbell-Thompson M, Mathews CE, Smith RD, Qian WJ, Kelly RT. Nat Commun, 2018, 9: 882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhu Y, Dou M, Piehowski PD, Liang Y, Wang F, Chu RK, Chrisler WB, Smith JN, Schwarz KC, Shen Y, Shukla AK, Moore RJ, Smith RD, Qian WJ, Kelly RT. Mol Cell Proteomics, 2018, 17: 1864–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu Y, Podolak J, Zhao R, Shukla AK, Moore RJ, Thomas GV, Kelly RT. Anal Chem, 2018, 90: 11756–11759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu Y, Clair G, Chrisler WB, Shen Y, Zhao R, Shukla AK, Moore RJ, Misra RS, Pryhuber GS, Smith RD, Ansong C, Kelly RT. Angew Chem Int Ed, 2018, 57: 12370–12374

    Article  CAS  Google Scholar 

  16. Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J. Nat Protoc, 2019, 14: 68–85

    Article  CAS  PubMed  Google Scholar 

  17. Cleland TP. J Proteome Res, 2018, 17: 3976–3983

    Article  CAS  PubMed  Google Scholar 

  18. Moggridge S, Sorensen PH, Morin GB, Hughes CS. J Proteome Res, 2018, 17: 1730–1740

    Article  CAS  PubMed  Google Scholar 

  19. Chen Q, Yan G, Gao M, Zhang X. Anal Chem, 2015, 87: 6674–6680

    Article  CAS  PubMed  Google Scholar 

  20. Shao X, Wang X, Guan S, Lin H, Yan G, Gao M, Deng C, Zhang X. Anal Chem, 2018, 90: 14003–14010

    Article  CAS  PubMed  Google Scholar 

  21. Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. Nat Meth, 2014, 11: 319–324

    Article  CAS  Google Scholar 

  22. Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, Sallusto F, Shen-Orr SS, Lanzavecchia A, Mann M, Meissner F. Nat Immunol, 2017, 18: 583–593

    Article  CAS  PubMed  Google Scholar 

  23. Sielaff M, Kuharev J, Bohn T, Hahlbrock J, Bopp T, Tenzer S, Distler U. J Proteome Res, 2017, 16: 4060–4072

    Article  CAS  PubMed  Google Scholar 

  24. Ke M, Liu J, Chen W, Chen L, Gao W, Qin Y, He A, Chu B, Tang J, Xu R, Deng Y, Tian R. Anal Chem, 2018, 90: 12574–12583

    Article  CAS  PubMed  Google Scholar 

  25. Xue L, Lin L, Zhou W, Chen W, Tang J, Sun X, Huang P, Tian R. J Chromatogr A, 2018, 1564: 76–84

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Wang S, Adhikari S, Deng Z, Wang L, Chen L, Ke M, Yang P, Tian R. Anal Chem, 2016, 88: 4864–4871

    Article  CAS  PubMed  Google Scholar 

  27. Yuan H, Zhang S, Zhao B, Weng Y, Zhu X, Li S, Zhang L, Zhang Y. Anal Chem, 2017, 89: 6324–6329

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Q, Fang F, Shan Y, Sui Z, Zhao B, Liang Z, Zhang L, Zhang Y. Anal Chem, 2017, 89: 5179–5185

    Article  CAS  PubMed  Google Scholar 

  29. Yuan H, Zhou Y, Xia S, Zhang L, Zhang X, Wu Q, Liang Z, Zhang Y. Anal Chem, 2012, 84: 5124–5132

    Article  CAS  PubMed  Google Scholar 

  30. Cox J, Mann M. Nat Biotechnol, 2008, 26: 1367–1372

    Article  CAS  PubMed  Google Scholar 

  31. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M. Nat Neurosci, 2015, 18: 1819–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wiśniewski JR, Wegler C, Artursson P. J Proteome Res, 2019, 18: 217–224

    PubMed  Google Scholar 

  33. Wiśniewski JR, Zielinska DF, Mann M. Anal Biochem, 2011, 410: 307–309

    Article  PubMed  CAS  Google Scholar 

  34. Erde J, Loo RRO, Loo JA. J Proteome Res, 2014, 13: 1885–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Z, Shen X, Chen D, Sun L. J Proteome Res, 2020, 19: 3315–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang N, Xu M, Wang P, Li L. Anal Chem, 2010, 82: 2262–2271

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Plouffe BD, Belov AM, Ray S, Wang X, Murthy SK, Karger BL, Ivanov AR. Mol Cell Proteom, 2015, 14: 1672–1683

    Article  CAS  Google Scholar 

  38. Deka B, Singh KK. Int J Biol Sci, 2017, 13: 545–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kota V, Sommer G, Hazard ES, Hardiman G, Twiss JL, Heise T. Mol Cell Biol, 2017, 38: e00129

    PubMed  PubMed Central  Google Scholar 

  40. Kim KJ, Kwon SH, Yun JH, Jeong HS, Kim HR, Lee EH, Ye SK, Cho CH. Oncogene, 2017, 36: 5445–5459

    Article  CAS  PubMed  Google Scholar 

  41. Xiao Y, Huang S, Qiu F, Ding X, Sun Y, Wei C, Hu X, Wei K, Long S, Xie L, Xun Y, Chen W, Zhang Z, Liu N, Xiang S. Ebiomedicine, 2020, 51: 102603

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hong HJ, Jiang L, Lin YF, He CL, Zhu GW, Du Q, Wang XQ, She FF, Chen YL. BMC Cancer, 2016, 16: 240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, Cheng C. J Clin Invest, 2011, 121: 1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gallo LH, Ko J, Donoghue DJ. Cell Cycle, 2017, 16: 634–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Q, Jin J, Lou F, Tang D. Sci China Chem, 2018, 61: 750–756

    Article  CAS  Google Scholar 

  46. Liu G, Zhang T, Tang Y, Miao P. Sci China Chem, 2018, 61: 393–396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (YS2019YFE020015, 2018YFC0910202, 2017YFA0505002) and the National Natural Science Foundation of China (21974136, 21725506, 91543201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiming Yuan or Lihua Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Dai, Z., Zhang, X. et al. Fully automated sample treatment method for high throughput proteome analysis. Sci. China Chem. 64, 313–321 (2021). https://doi.org/10.1007/s11426-020-9878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9878-8

Navigation