Skip to main content
Log in

Crosstalk-free colloidosomes for high throughput single-molecule protein analysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Droplet microfluidics is a powerful platform for high-throughput single-molecule protein analysis. However, the issues of coalescence and crosstalk of droplets compromise the accuracy of detection and hinder its wide application. To address these limitations, a novel colloidosome-based method was presented by combining a Pickering emulsion with droplet microfluidics for single-molecule protein analysis. Utilizing the self-assembly of easily synthesized colloidal surfactant F-SiO2 NPs at the water/oil interface, the colloidosomes are rigidly stabilized and can effectively avoid the leakage of fluorescent molecules. The crosstalk-free colloidosomes enable high-throughput single-molecule protein analysis, including heterogenous dynamic studies and digital detection. As a robust and accurate method, colloidosome-based microfluidics is promising as a powerful tool for a wide variety of applications, such as directed enzyme evolution, digital enzyme-linked immunosorbent assay (ELISA), and screening of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss S. Science, 1999, 283: 1676–1683

    CAS  PubMed  Google Scholar 

  2. Lu HP. Acc Chem Res, 2005, 38: 557–565

    CAS  PubMed  Google Scholar 

  3. Moerner WE. Proc Natl Acad Sci USA, 2007, 104: 12596–12602

    CAS  PubMed  Google Scholar 

  4. Elf J, Barkefors I. Annu Rev Biochem, 2019, 88: 635–659

    CAS  PubMed  Google Scholar 

  5. Ruggeri FS, Charmet J, Kartanas T, Peter Q, Chia S, Habchi J, Dobson CM, Vendruscolo M, Knowles TPJ. Nat Commun, 2018, 9: 1–2

    CAS  Google Scholar 

  6. Yang Y, Hong W. Sci China Chem, 2018, 61: 761–762

    CAS  Google Scholar 

  7. Chen L, Feng A, Wang M, Liu J, Hong W, Guo X, Xiang D. Sci China Chem, 2018, 61: 1368–1384

    CAS  Google Scholar 

  8. Qiu K, Fato TP, Yuan B, Long Y. Small, 2019, 15: 1805426

    Google Scholar 

  9. Ying YL, Long YT. Sci China Chem, 2017, 60: 1187–1190

    CAS  Google Scholar 

  10. Shim J, Ranasinghe RT, Smith CA, Ibrahim SM, Hollfelder F, Huck WTS, Klenerman D, Abell C. ACS Nano, 2013, 7: 5955–5964

    CAS  PubMed  Google Scholar 

  11. Zhu Z, Yang CJ. Acc Chem Res, 2017, 50: 22–31

    CAS  PubMed  Google Scholar 

  12. Yelleswarapu V, Buser JR, Haber M, Baron J, Inapuri E, Issadore D. Proc Natl Acad Sci USA, 2019, 116: 4489–4495

    CAS  PubMed  Google Scholar 

  13. Zhang Y, Minagawa Y, Kizoe H, Miyazaki K, Iino R, Ueno H, Tabata KV, Shimane Y, Noji H. Sci Adv, 2019, 5: eaav8185

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shang L, Cheng Y, Zhao Y. Chem Rev, 2017, 117: 7964–8040

    CAS  PubMed  Google Scholar 

  15. Zhang H, Liu Y, Wang J, Shao C, Zhao Y. Sci China Chem, 2019, 62: 87–94

    CAS  Google Scholar 

  16. Baret JC. Lab Chip, 2012, 12: 422–433

    CAS  PubMed  Google Scholar 

  17. Courtois F, Olguin LF, Whyte G, Theberge AB, Huck WTS, Holl-felder F, Abell C. Anal Chem, 2009, 81: 3008–3016

    CAS  PubMed  Google Scholar 

  18. Najah M, Mayot E, Mahendra-Wijaya IP, Griffiths AD, Ladame S, Drevelle A. Anal Chem, 2013, 85: 9807–9814

    CAS  PubMed  Google Scholar 

  19. Gruner P, Riechers B, Semin B, Lim J, Johnston A, Short K, Baret JC. Nat Commun, 2016, 7: 1–9

    Google Scholar 

  20. Wu X, Li X, Li H, Shi W, Ma H. Chem Commun, 2017, 53: 2443–2446

    CAS  Google Scholar 

  21. Li H, Liu W, Zhang F, Zhu X, Huang L, Zhang H. Anal Chem, 2018, 90: 855–858

    CAS  PubMed  Google Scholar 

  22. Li Z, Cheng H, Shao S, Lu X, Mo L, Tsang J, Zeng P, Guo Z, Wang S, Nathanson DA, Heath JR, Wei W, Xue M. Angew Chem Int Ed, 2018, 57: 11554–11558

    CAS  Google Scholar 

  23. Li Z, Wang Z, Tang Y, Lu X, Chen J, Dong Y, Wu B, Wang C, Yang L, Guo Z. Nat Commun, 2019, 10: 1–16

    Google Scholar 

  24. Azizi M, Zaferani M, Dogan B, Zhang S, Simpson KW, Abbaspourrad A. Anal Chem, 2018, 90: 14137–14144

    CAS  PubMed  Google Scholar 

  25. Avesar J, Rosenfeld D, Truman-Rosentsvit M, Ben-Arye T, Geffen Y, Bercovici M, Levenberg S. Proc Natl Acad Sci USA, 2017, 114: E5787–E5795

    CAS  PubMed  Google Scholar 

  26. Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angilè FE, Schmitz CHJ, Köster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA. Lab Chip, 2008, 8: 1632–1639

    CAS  PubMed  Google Scholar 

  27. Skhiri Y, Gruner P, Semin B, Brosseau Q, Pekin D, Mazutis L, Goust V, Kleinschmidt F, El Harrak A, Hutchison JB, Mayot E, Bartolo JF, Griffiths AD, Taly V, Baret JC. Soft Matter, 2012, 8: 10618–10627

    CAS  Google Scholar 

  28. Scheler O, Kaminski TS, Ruszczak A, Garstecki P. ACS Appl Mater Interfaces, 2016, 8: 11318–11325

    CAS  PubMed  Google Scholar 

  29. Ma F, Fischer M, Han Y, Withers SG, Feng Y, Yang GY. Anal Chem, 2016, 88: 8587–8595

    CAS  PubMed  Google Scholar 

  30. Wang X, Cohen L, Wang J, Walt DR. J Am Chem Soc, 2018, 140: 18132–18139

    CAS  PubMed  Google Scholar 

  31. Warren AD, Gaylord ST, Ngan KC, Dumont Milutinovic M, Kwong GA, Bhatia SN, Walt DR. J Am Chem Soc, 2014, 136: 13709–13714

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW. Anal Chem, 2011, 83: 8604–8610

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pickering SU. J Chem Soc Trans, 1907, 91: 2001–2021

    Google Scholar 

  34. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA. Science, 2002, 298: 1006–1009

    CAS  PubMed  Google Scholar 

  35. Wu J, Ma GH. Small, 2016, 12: 4633–4648

    CAS  PubMed  Google Scholar 

  36. Liu K, Jiang J, Cui Z, Binks BP. Langmuir, 2017, 33: 2296–2305

    CAS  PubMed  Google Scholar 

  37. Wang L, Wang J. Nanoscale, 2019, 11: 16708–16722

    CAS  PubMed  Google Scholar 

  38. Liu D, Zhou F, Li C, Zhang T, Zhang H, Cai W, Li Y. Angew Chem Int Ed, 2015, 54: 9596–9600

    CAS  Google Scholar 

  39. Brotchie A. Nat Rev Mater, 2017, 2: 17002

    Google Scholar 

  40. Sun S, Li M, Dong F, Wang S, Tian L, Mann S. Small, 2016, 12: 1920–1927

    CAS  PubMed  Google Scholar 

  41. Phan-Quang GC, Wee EHZ, Yang F, Lee HK, Phang IY, Feng X, Alvarez-Puebla RA, Ling XY. Angew Chem Int Ed, 2017, 56: 5565–5569

    CAS  Google Scholar 

  42. Wang X, Ji J, Liu T, Liu Y, Qiao L, Liu B. Anal Chem, 2019, 91: 2260–2265

    CAS  PubMed  Google Scholar 

  43. Yi J, Wang X, Dai Y, Qiao L, Liu B. Anal Chem, 2019, 91: 14220–14225

    CAS  PubMed  Google Scholar 

  44. Jiang H, Hong L, Li Y, Ngai T. Angew Chem, 2018, 130: 11836–11840

    Google Scholar 

  45. Guo T, Meng T, Yang G, Wang Y, Su R, Zhou S. Nano Lett, 2019, 19: 6065–6071

    CAS  PubMed  Google Scholar 

  46. Dou H, Li M, Qiao Y, Harniman R, Li X, Boott CE, Mann S, Manners I. Nat Commun, 2017, 8: 1–8

    Google Scholar 

  47. Binks BP. Curr Opin Colloid Interface Sci, 2002, 7: 21–41

    CAS  Google Scholar 

  48. Pan M, Rosenfeld L, Kim M, Xu M, Lin E, Derda R, Tang SKY. ACS Appl Mater Interfaces, 2014, 6: 21446–21453

    CAS  PubMed  Google Scholar 

  49. Liu Y, Huang Q, Wang J, Fu F, Ren J, Zhao Y. Sci Bull, 2017, 62: 1283–1290

    CAS  Google Scholar 

  50. Wang H, Zhao Z, Liu Y, Shao C, Bian F, Zhao Y. Sci Adv, 2018, 4: eaat2816

    PubMed  PubMed Central  Google Scholar 

  51. Zhu P, Wang L. Lab Chip, 2017, 17: 34–75

    CAS  Google Scholar 

  52. Anna SL, Mayer HC. Phys Fluids, 2006, 18: 121512

    Google Scholar 

  53. Yin K, Zeng X, Liu W, Xue Y, Li X, Wang W, Song Y, Zhu Z, Yang C. Anal Chem, 2019, 91: 6003–6011

    CAS  PubMed  Google Scholar 

  54. Jacobson RH, Zhang XJ, Dubose RF, Matthews BW. Nature, 1994, 369: 761–766

    CAS  PubMed  Google Scholar 

  55. Matthews BW. Comptes Rendus Biol, 2005, 328: 549–556

    CAS  Google Scholar 

  56. Juers DH, Matthews BW, Huber RE. Protein Sci, 2012, 21: 1792–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  57. MüLLER-HILL B, Kania J. Nature, 1974, 249: 561–563

    PubMed  Google Scholar 

  58. Li X, Jiang Y, Chong S, Walt DR. Proc Natl Acad Sci USA, 2018, 115: 8346–8351

    CAS  PubMed  Google Scholar 

  59. Conradie EH, Moore DF. J Micromech Microeng, 2002, 12: 368–374

    CAS  Google Scholar 

  60. Woronoff G, El Harrak A, Mayot E, Schicke O, Miller OJ, Soumillion P, Griffiths AD, Ryckelynck M. Anal Chem, 2011, 83: 2852–2857

    CAS  PubMed  Google Scholar 

  61. Biocanin M, Bues J, Dainese R, Amstad E, Deplancke B. Lab Chip, 2019, 19: 1610–1620

    CAS  PubMed  Google Scholar 

  62. Marchesi SL, Steers Jr. E, Shifrin S. Biochim Biophys Acta, 1969, 181: 20–34

    CAS  PubMed  Google Scholar 

  63. Liu C, Xu X, Li B, Situ B, Pan W, Hu Y, An T, Yao S, Zheng L. Nano Lett, 2018, 18: 4226–4232

    CAS  PubMed  Google Scholar 

  64. Kang DK, Ali MM, Zhang K, Huang SS, Peterson E, Digman MA, Gratton E, Zhao W. Nat Commun, 2014, 5: 5427

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775128, 21974113, 21927806, 21735004, 21435004, 21521004), the Program for Chang Jiang Scholars and Innovative Research Teams in University (IRT13036) and the National Science Fund for Fostering Talents in Basic Science (NFFTBS, J1310024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zhu.

Ethics declarations

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Zeng, X., Liang, X. et al. Crosstalk-free colloidosomes for high throughput single-molecule protein analysis. Sci. China Chem. 63, 1507–1514 (2020). https://doi.org/10.1007/s11426-020-9818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9818-9

Keywords

Navigation