Skip to main content
Log in

A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A carbon paste modified sensor based on a novel composite of zinc oxide nanoparticles deposited on reduced graphene oxide (ZnO-rGrO) and Prussian blue (PB) was drop-cast (ZnO-rGrO-PB/MCPE) for the sensitive estimation of Rutin (Rtn) at pH 7.0. The high surface area of ZnO-rGrO and electrocatalytic property of PB promotes the oxidation of Rtn. Field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques were employed to confirm the deposition of ZnO-rGrO and PB on carbon paste electrode (CPE). The ability of ZnO-rGrO-PB/MCPE in charge transfer at the interface was investigated using electrochemical impedance spectroscopy (EIS). The heterogeneous rate constant (ks) and the charge transfer coefficient (α) have been calculated as 6.08 s−1 and 0.74 respectively. This sensor showed a wide linear response for Rtn from 7.0×10−8 to 7.0×10−6 M and 7.0×10−6 to 1.0×10−4 M with a limit of detection (2.05±0.04)×10−8 M (S/N=3). The application of ZnO-rGrO-PB/MCPE was found in the analysis of Rtn in fruit juice samples using standard addition method. This sensor showed good reproducibility, stability, selectivity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Trends Food Sci Tech, 2017, 67: 220–235

    Article  CAS  Google Scholar 

  2. Zielinska D, Szawara-Nowak D, Zielinski H. Pol J Food Nutr Sci, 2010, 60: 315–321

    CAS  Google Scholar 

  3. Squadrito F, Altavilla D, Bosso SO. Eur Rev Med Pharmacol Sci, 2000, 4: 21–24

    CAS  PubMed  Google Scholar 

  4. Horcajada MN, Sanchez C, Membrez Scalfo F, Drion P, Comblain F, Taralla S, Donneau AF, Offord EA, Henrotin Y. Osteoarthritis Cartilage, 2015, 23: 94–102

    Article  PubMed  Google Scholar 

  5. Attia TZ. Spectrochim Acta Mol Biomol Spectrosc, 2016, 169: 82–86

    Article  CAS  Google Scholar 

  6. Li S, Zhang L, Chen L, Zhong Y, Ni Y. Anal Methods, 2016, 8: 4056–4063

    Article  CAS  Google Scholar 

  7. Vytras K, Svancara I, Metelka R. J Serb Chem Soc, 2009, 74: 1021–1033

    Article  CAS  Google Scholar 

  8. Yang S, Li G, Wang G, Zhao J, Qiao Z, Qu L. Sens Actuators B-Chem, 2015, 206: 126–132

    Article  CAS  Google Scholar 

  9. Sun W, Yang M, Li Y, Jiang Q, Liu S, Jiao K. J Pharm Biomed Anal, 2008, 48: 1326–1331

    Article  CAS  PubMed  Google Scholar 

  10. Niu X, Weng W, Yin C, Niu Y, Li G, Dong R, Men Y, Sun W. J Electroanal Chem, 2018, 811: 78–83

    Article  CAS  Google Scholar 

  11. Gholivand MB, Mohammadi-Behzad L, Hosseinkhani H. Anal Biochem, 2016, 493: 35–43

    Article  CAS  PubMed  Google Scholar 

  12. Yang S, Li G, Zhao J, Zhu H, Qu L. J Electroanal Chem, 2014, 717-718: 225–230

    Article  CAS  Google Scholar 

  13. da Silva JG, e Silva MRL, de Oliveira AC, SouzaDe JR, Vaz CMP, de Castro CSP. J Food Comp Anal, 2012, 25: 1–8

    Article  CAS  Google Scholar 

  14. Roushani M, Valipour A. Sens Actuators B-Chem, 2016, 222: 1103–1111

    Article  CAS  Google Scholar 

  15. Roushani M, Dizajdizi BZ. Catal Commun, 2015, 69: 133–137

    Article  CAS  Google Scholar 

  16. Rodrígues JA, Fernández-García M. Synthesis, Properties and Applications of Oxide Nanoparticles. New Jersey: Whiley, 2007

    Book  Google Scholar 

  17. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Nano-Micro Lett, 2015, 7: 219–242

    Article  CAS  Google Scholar 

  18. Afzali M, Mostafavi A, Shamspur T. Mater Sci Eng-C, 2016, 68: 789–797

    Article  CAS  Google Scholar 

  19. Madrakian T, Ghasemi H, Haghshenas E, Afkhami A. RSC Adv, 2016, 6: 33851–33856

    Article  CAS  Google Scholar 

  20. Cui S, Li L, Ding Y, Zhang J, Yang H, Wang Y. Talanta, 2017, 164: 291–299

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez C, García-Beltrán O, Nagles E. Anal Methods, 2018, 10: 1196–1202

    Article  CAS  Google Scholar 

  22. Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW. Nano Lett, 2008, 8: 1965–1970

    Article  CAS  PubMed  Google Scholar 

  23. Zou B, Wang XX, Huang XX, Wang JN. Chem Commun, 2015, 51: 741–744

    Article  CAS  Google Scholar 

  24. Guo Z, Li D, Luo XK, Li YH, Zhao QN, Li MM, Zhao YT, Sun TS, Ma C. J Colloid Interface Sci, 2017, 490: 11–22

    Article  CAS  PubMed  Google Scholar 

  25. Kesavan S, Kumar DR, Lee YR, Shim JJ. Sens Actuators B-Chem, 2017, 241: 455–465

    Article  CAS  Google Scholar 

  26. Haldorai Y, Yeon SH, Huh YS, Han YK. Sens Actuators B-Chem, 2017, 239: 1221–1230

    Article  CAS  Google Scholar 

  27. Pandey PC, Panday D. Electrochim Acta, 2016, 190: 758–765

    Article  CAS  Google Scholar 

  28. Wang L, Tricard S, Yue P, Zhao J, Fang J, Shen W. Biosens Bioelectron, 2016, 77: 1112–1118

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Cao Y, Wang X, Fang G, Wang S. Biosens Bioelectron, 2015, 64: 247–254

    Article  CAS  PubMed  Google Scholar 

  30. Xu T, Zhang H, Li X, Xie Z, Li X. Biosens Bioelectron, 2015, 73: 167–173

    Article  CAS  PubMed  Google Scholar 

  31. Nagles E, Penagos-Llanos J, García-Beltrán O, Hurtado J. J Anal Chem, 2018, 73: 504–511

    Article  CAS  Google Scholar 

  32. Manasa G, Mascarenhas RJ, Satpati AK, D’Souza OJ, Dhason A. Mater Sci Eng-C, 2017, 73: 552–561

    Article  CAS  Google Scholar 

  33. Shilpa S, Basavaraja BM, Majumder SB, Sharma A. J Mater Chem A, 2015, 3: 5344–5351

    Article  CAS  Google Scholar 

  34. Pacholski C, Kornowski A, Weller H. Angew Chem Int Ed, 2002, 41: 1188–1191

    Article  CAS  Google Scholar 

  35. Kim HH, Park S, Yi Y, Son DI, Park C, Hwang DK, Choi WK. Sci Rep, 2015, 5: 8968–8972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ricci F, Arduini F, Amine A, Moscone D, Palleschi G. J Electroanal Chem, 2004, 563: 229–237

    Article  CAS  Google Scholar 

  37. Luo Y, Hu Q, Liu G, Sun D. Indian J Chem, 2015, 53A: 187–192

    Google Scholar 

  38. Buleandra M, Rabinca AA, Mihailciuc C, Balan A, Nichita C, Stamatin I, Ciucu AA. Sens Actuators B-Chem, 2014, 203: 824–832

    Article  CAS  Google Scholar 

  39. Sun W, Dong L, Lu Y, Deng Y, Yu J, Sun X, Zhu Q. Sens Actuators B-Chem, 2014, 199: 36–41

    Article  CAS  Google Scholar 

  40. Greef R, Peat R, Peter LM, Pletcher D, Robinson J. Instrumental Methods in Electrochemistry. Cambridge: Woodhead Publishing Ltd., 2010. 178

    Google Scholar 

  41. Laviron E. J Electroanal Chem Interfacial Electrochem, 1979, 101: 19–28

    Article  CAS  Google Scholar 

  42. Gao F, Qi X, Cai X, Wang Q, Gao F, Sun W. Thin Solid Films, 2012, 520: 5064–5069

    Article  CAS  Google Scholar 

  43. Zou C, Bin D, Yang B, Zhang K, Du Y. RSC Adv, 2016, 6: 107851–107858

    Article  CAS  Google Scholar 

  44. Yang H, Li B, Cui R, Xing R, Liu S. J Nanopart Res, 2017, 19: 354–364

    Article  CAS  Google Scholar 

  45. Yang X, Long J, Sun D. Electroanalysis, 2016, 28: 83–87

    Article  CAS  Google Scholar 

  46. Li S, Yang B, Wang C, Wang J, Feng Y, Yan B, Xiong Z, Du Y. J Electroanal Chem, 2017, 786: 20–27

    Article  CAS  Google Scholar 

  47. Yan L, Niu X, Wang W, Li X, Sun X, Zheng C, Wang J, Sun W. Int J Electrochem Sci, 2016, 11: 1738–1750

    CAS  Google Scholar 

  48. Liu Z, Xue Q, Guo Y. Biosens Bioelectron, 2017, 89: 444–452

    Article  CAS  PubMed  Google Scholar 

  49. Elçin S, Yola ML, Eren T, Girgin B, Atar N. Electroanalysis, 2016, 28: 611–619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Board of Research in Nuclear Sciences (BRNS, BARC, Mumbai), Department of Atomic Energy, Government of India (37(2)/14/10/2014-brns). The authors also acknowledge Mr Dhason A. for the FE-SEM and AFM characterisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J Mascarenhas.

Electronic supplementary material

11426_2018_9353_MOESM1_ESM.pdf

A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin in the presence of Ascorbic acid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, O.J., Mascarenhas, R.J., Satpati, A.K. et al. A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin. Sci. China Chem. 62, 262–270 (2019). https://doi.org/10.1007/s11426-018-9353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9353-x

Keywords

Navigation