Skip to main content
Log in

Ni-mediated C–N activation of amides and derived catalytic transformations

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Amide, as a ubiquitous functional group, is essential in various aspects of chemistry and biology. Although the history of studying amide is rich and fruitful, the synthetic application of amide is very limited due to the inertness of amide C–N bond. Recently, significant advances have been achieved towards the nickel-mediated C–N activation of amides. This approach allows a facile generation of acyl-nickel intermediates, and a number of unique transformations have been designed and realized based on the amide C–N bond activation. Focused on the catalytic transformation, this review summarizes and categorizes the recent advances on the synthetic applications of Ni-mediated C–N bond activation of amides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. New York: John Wiley & Sons, 2003

    Google Scholar 

  2. Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew Chem Int Ed, 2016, 55: 10578–10599

    Article  CAS  Google Scholar 

  3. For related reviews, see: (a) Meng G, Shi S, Szostak M. Synlett, 2016, 27: 2530–2540

    Article  CAS  Google Scholar 

  4. Dander JE, Garg NK. ACS Catal, 2017, 7: 1413–1423

    Article  CAS  Google Scholar 

  5. Liu C, Szostak M. Chem Eur J, 2017, 53, doi: 10.1002/chem.201605012

    Google Scholar 

  6. For Szostak’s works, see: (a) Meng G, Szostak M. Angew Chem Int Ed, 2015, 54: 14518–14522

    Article  CAS  Google Scholar 

  7. Liu C, Meng G, Szostak M. J Org Chem, 2016, 81: 12023–12030

    Article  CAS  Google Scholar 

  8. Meng G, Szostak M. Org Lett, 2015, 17: 4364–4367

    Article  CAS  Google Scholar 

  9. Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org Lett, 2016, 18: 4194–4197

    Article  CAS  Google Scholar 

  10. Meng G, Szostak M. Org Biomol Chem, 2016, 14: 5690–5707

    Article  CAS  Google Scholar 

  11. Meng G, Shi S, Szostak M. ACS Catal, 2016, 6: 7335–7339

    Article  CAS  Google Scholar 

  12. For related Pd-catalyzed C–N activations with amide, see: (a) Li X, Zou G. Chem Commun, 2015, 51: 5089–5092

    Article  CAS  Google Scholar 

  13. Li X, Zou G. J Organomet Chem, 2015, 794: 136–145

    Article  CAS  Google Scholar 

  14. Cui M, Wu H, Jian J, Wang H, Liu C, Daniel S, Zeng Z. Chem Commun, 2016, 52: 12076–12079

    Article  CAS  Google Scholar 

  15. Wu H, Li Y, Cui M, Jian J, Zeng Z. Adv Synth Catal, 2016, 358: 3876–3880

    Article  CAS  Google Scholar 

  16. Meng G, Szostak M. Org Lett, 2016, 18: 796–799

    Article  CAS  Google Scholar 

  17. Wu H, Liu T, Cui M, Li Y, Jian J, Wang H, Zeng Z. Org Biomol Chem, 2017, 15: 536–540

    Article  CAS  Google Scholar 

  18. Although it has generally been proposed that these transformations involve Ni(0)-Ni(II) catalytic cycles, we want to emphasize that there is currently no strong evidence against the Ni(I)-Ni(III) catalytic cycles. Therefore, the Ni(I)-Ni(III) catalytic cycles may play a role in the amide C–N bond activation. See: (a) Li Z, Zhang SL, Fu Y, Guo QX, Liu L. J Am Chem Soc, 2009, 131: 8815–8823

    Article  CAS  Google Scholar 

  19. Li Z, Liu L. Chin J Catal, 2015, 36: 3–14

    Article  Google Scholar 

  20. Hong X, Liang Y, Houk KN. J Am Chem Soc, 2014, 136: 2017–2025

    Article  CAS  Google Scholar 

  21. Weires NA, Baker EL, Garg NK. Nat Chem, 2016, 8: 75–79

    Article  CAS  Google Scholar 

  22. For a related mechanistic study, see: Liu LL, Chen P, Sun Y, Wu Y, Chen S, Zhu J, Zhao Y. J Org Chem, 2016, 81: 11686–11696

    Article  CAS  Google Scholar 

  23. For references on amide ground-state distortion, see: (a) Szostak R, Aubé J, Szostak M. Chem Commun, 2015, 51: 6395–6398

    Article  CAS  Google Scholar 

  24. Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J Org Chem, 2016, 81: 8091–8094

    Article  CAS  Google Scholar 

  25. Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Chem Eur J, 2016, 22: 14494–14498

    Article  CAS  Google Scholar 

  26. Szostak R, Aubé J, Szostak M. J Org Chem, 2015, 80: 7905–7927

    Article  CAS  Google Scholar 

  27. Szostak M, Aubé J. Chem Rev, 2013, 113: 5701–5765

    Article  CAS  Google Scholar 

  28. Liu Y, Meng G, Liu R, Szostak M. Chem Commun, 2016, 52: 6841–6844

    Article  CAS  Google Scholar 

  29. Shi S, Meng G, Szostak M. Angew Chem Int Ed, 2016, 55: 6959–6963

    Article  CAS  Google Scholar 

  30. Simmons BJ, Weires NA, Dander JE, Garg NK. ACS Catal, 2016, 6: 3176–3179

    Article  CAS  Google Scholar 

  31. Shi S, Szostak M. Org Lett, 2016, 18: 5872–5875

    Article  CAS  Google Scholar 

  32. Shi S, Szostak M. Chem Eur J, 2016, 22: 10420–10424

    Article  CAS  Google Scholar 

  33. Hie L, Fine Nathel NF, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature, 2015, 524: 79–83

    Article  CAS  Google Scholar 

  34. Hie L, Baker EL, Anthony SM, Desrosiers JN, Senanayake C, Garg NK. Angew Chem Int Ed, 2016, 55: 15129–15132

    Article  CAS  Google Scholar 

  35. Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat Commun, 2016, 7: 11554

    Article  Google Scholar 

  36. Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew Chem Int Ed, 2016, 55: 8718–8722

    Article  CAS  Google Scholar 

  37. Dey A, Sasmal S, Seth K, Lahiri GK, Maiti D. ACS Catal, 2017, 7: 433–437

    Article  CAS  Google Scholar 

  38. Tobisu M, Nakamura K, Chatani N. J Am Chem Soc, 2014, 136: 5587–5590

    Article  CAS  Google Scholar 

  39. Lei Y, Wrobleski AD, Golden JE, Powell DR, Aubé J. J Am Chem Soc, 2005, 127: 4552–4553

    Article  CAS  Google Scholar 

  40. Hu F, Lalancette R, Szostak M. Angew Chem Int Ed, 2016, 55: 5062–5066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang University and the Chinese “Thousand Youth Talents Plan”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ji, CL. & Hong, X. Ni-mediated C–N activation of amides and derived catalytic transformations. Sci. China Chem. 60, 1413–1424 (2017). https://doi.org/10.1007/s11426-017-9025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9025-1

Keywords

Navigation