Skip to main content
Log in

Tunable LCST-type phase behavior of [FeCl4]--based ionic liquids in water

  • Articles
  • SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then the lower critical solution temperature (LCST)-type phase behavior of these magnetic ILs in water is investigated as a function of concentration. It is shown that cation structure, alkyl chain length and molar ratio of FeCl3/chloride IL have a significant influence on the LCST of the mixtures. The phase separation temperature can be tuned efficiently by these factors. Meanwhile, the LCST-type phase separation process is also investigated by dynamic light scattering. The results support the mechanism that the hydrogen bonds of the [FeCl4]- anion with water have been gradually disrupted to form ILs aggregates with increasing temperature. In addition, the stability of the ILs in water is also examined in some details. These LCST-type phase separation systems may have potential applications in extraction and separation techniques at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasserscheid P, Welton T. Ionic Liquids in Synthesis. 2nd Ed. Weinheim: John Wiley-VCH, 2007. 1–6

    Book  Google Scholar 

  2. Hallett JP, Welton T. Chem Rev, 2011, 111: 3508–3576

    Article  CAS  Google Scholar 

  3. Wang H, Tan B, Wang J, Li Z, Zhang S. Langmuir, 2014, 30: 3971–3978

    Article  CAS  Google Scholar 

  4. Kohno Y, Deguchi Y, Ohno H. Chem Commun, 2012, 48: 11883–11885

    Article  CAS  Google Scholar 

  5. Brown P, Wasbrough MJ, Gurkan BE, Hatton TA. Langmuir, 2014, 30: 4267–4272

    Article  CAS  Google Scholar 

  6. Yang J, Wang H, Wang J, Zhang Y, Guo Z. Chem Commun, 2014, 50: 14979–14982

    Article  CAS  Google Scholar 

  7. Santos E, Albo J, Irabien A. RSC Adv, 2014, 4: 40008–40018

    Article  CAS  Google Scholar 

  8. Hayashi S, Hamaguchi H. Chem Lett, 2004, 33: 1590–1591

    Article  CAS  Google Scholar 

  9. Wang H, Yan R, Li Z, Zhang X, Zhang S. Catal Commun, 2010, 11: 763–767

    Article  CAS  Google Scholar 

  10. Clark KD, Nacham O, Yu H, Li T, Yamsek MM, Ronning DR, Anderson JL. Anal Chem, 2015, 87: 1552–1559

    Article  CAS  Google Scholar 

  11. Nie Y, Gong X, Gao H, Zhang X, Zhang S. Sci China Chem, 2014, 57: 1766–1773

    Article  CAS  Google Scholar 

  12. Misuk V, Mai A, Giannopoulos K, Alobaid F, Epplec B, Loewe H. Lab Chip, 2013,13: 4542–4548

    Article  CAS  Google Scholar 

  13. Santos E, Albo J, Rosatella A, Afonso CAM, Irabien Á. J Chem Technol Biotechnol, 2014, 89: 866–871

    Article  CAS  Google Scholar 

  14. Klee A, Prevost S, Gasser U, Gradzielski M. J Phys Chem B, 2015, 119: 4133–4142

    Article  CAS  Google Scholar 

  15. Yamauchi H, Maeda Y. J Phys Chem B, 2007, 111: 12964–12968

    Article  CAS  Google Scholar 

  16. Lee H, Rosen BM, Fenyvesi G, Sunkara HB. J PolymSci Part A: Polym Chem, 2012, 50: 4311–4315

    Article  CAS  Google Scholar 

  17. Maia FM, Rodríguez O, Macedo EA. Fluid Phase Equilibria, 2010, 296: 184–191

    Article  CAS  Google Scholar 

  18. Fukumoto K, Ohno H. Angew Chem Int Ed, 2007, 46: 1852–1855

    Article  CAS  Google Scholar 

  19. Kohno Y, Arai H, Saita S, Ohno H. Australian J Chem, 2011, 64: 1560–1567

    Article  CAS  Google Scholar 

  20. Kohno Y, Arai H, Ohno H. Chem Commun, 2011, 47: 4772–4774

    Article  CAS  Google Scholar 

  21. Saita S, Kohno Y, Ohno H. Chem Commun, 2013, 49: 93–95

    Article  CAS  Google Scholar 

  22. Deguchi Y, Kohno Y, Ohno H. Chem Lett, 2015, 44: 238–240

    Article  CAS  Google Scholar 

  23. Nitta A, Morita T, Saita S, Kohno Y, Ohno H, Nishikawa K. Chem Phys Lett, 2015, 628: 108–112

    Article  CAS  Google Scholar 

  24. Saita S, Kohno Y, Nakamura N, Ohno H. Chem Commun, 2013, 49: 8988–8990

    Article  CAS  Google Scholar 

  25. Saita S, Mieno Y, Kohno Y, Ohno H. Chem Commun, 2014, 50: 15450–15452

    Article  CAS  Google Scholar 

  26. Xie Z, Taubert A. ChemPhysChem, 2011, 12: 364–368

    Article  CAS  Google Scholar 

  27. Pei Y, Huang Y, Li L, Wang J. J Chem Thermodynamics, 2014, 74: 231–237

    Article  CAS  Google Scholar 

  28. Pernak J, Syguda A, Mirska I, Pernak A, Nawrot J, Pradzynska A, Griffin ST, Rogers RD. Chem Eur J, 2007, 13: 6817–6827

    Article  CAS  Google Scholar 

  29. Brown P, Bushmelev A, Butts CP, Cheng J, Eastoe J, Grillo I, Heenan RK, Schmidt AM. Angew Chem Int Ed, 2012, 51: 2414–2416

    Article  CAS  Google Scholar 

  30. Costa AJL, Soromenho MRC, Shimizu K, Esperança JMSS, Lopes JNC, Rebelo LPN. RSC Adv, 2013, 3: 10262–10271

    Article  CAS  Google Scholar 

  31. Costa AJL, Soromenho MRC, Shimizu K, Marrucho IM, Esperança JMSS, Lopes JNC, Rebelo LPN. J Phys Chem B, 2012, 116: 9186–9195

    Article  CAS  Google Scholar 

  32. Li JG, Hu YF, Sun SF, Ling S, Zhang JZ. J Phys Chem B, 2012, 116: 6461–6464

    Article  CAS  Google Scholar 

  33. Sitze MS, Schreiter ER, Patterson EV, Freeman RG. Inorg Chem, 2001, 40: 2298–2304

    Article  CAS  Google Scholar 

  34. Stober R, Herrmann W. J Phys Chem A, 2013, 117: 3960–3971

    Article  Google Scholar 

  35. Estager J, Holbrey JD, Swadzba-Kwasny M. Chem Soc Rev, 2014, 43: 847–886

    Article  CAS  Google Scholar 

  36. Tang Y, Hu X, Guan P, Lin X, Li X. J Phys Org Chem, 2014, 27: 498–503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianji Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Y., Cao, Y., Huang, Y. et al. Tunable LCST-type phase behavior of [FeCl4]--based ionic liquids in water. Sci. China Chem. 59, 587–593 (2016). https://doi.org/10.1007/s11426-016-5577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5577-0

Keywords

Navigation