Skip to main content
Log in

The highly conducting carbon electrodes derived from spin-coated polyacrylonitrile films

  • Articles
  • SPECIAL TOPIC · Molecular Functional Materials and Applications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carbon films prepared from pyrolyzation of spin-casted polyacrylonitrile (PAN) thin films display high electrical conductivity (>600 S/cm, at 1000 °C carbonization), low sheet resistance (about 100 Ω/square at the PAN film thickness of 70 nm) and partial transmittance. These pyrolyzed PAN (PPAN) films were patterned as bottom electrodes by photolithography, and utilized as drain and source electrodes to fabricate organic field-effect transistor (OFET) devices with a p-type semiconductor (P3HT) and an n-type semiconductor (DPP-containing quinoidal small molecule) through a spin-coating procedure. The results showed that the devices with the PAN electrodes exhibited almost the same excellent performance without any further modification compared to those devices with traditional Au electrodes. Since these PPAN films had the advantages of low-cost, high performance, easier for large-area fabrication, thermal and chemical stability, it should be a promising electrode material for organic electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu X, Zhang W, Wang C, Wen TC, Wei Y. ProgPolym Sci, 2011, 36: 671–712

    CAS  Google Scholar 

  2. Tran HD, Li D, Kaner RB. Adv Mater, 2009, 21: 1487–1499

    Article  CAS  Google Scholar 

  3. Li C, Bai H, Shi G. Chem Soc Rev, 2009, 38: 2397–2409

    Article  CAS  Google Scholar 

  4. Wan M. Macromol Rapid Commun, 2009, 30: 963–975

    Article  CAS  Google Scholar 

  5. Stejskal J, Sapurina I, Trchova M. Prog Polym Sci, 2010, 35: 1420–1481

    Article  CAS  Google Scholar 

  6. Laslau C, Zujovic Z, Travas-Sejdic J. Prog Polym Sci, 2010, 35: 1403–1419

    Article  CAS  Google Scholar 

  7. MacDiarmid AG. Synth Met, 2001, 125: 11–22

    Article  Google Scholar 

  8. Heeger AJ. MRSBull, 2001, 26: 900–904

    CAS  Google Scholar 

  9. Heeger AJ. Chem Soc Rev, 2010, 39: 2354–2371

    Article  CAS  Google Scholar 

  10. Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P. Proc Natl Acad Sci USA, 2001, 98: 4835–4840

    Article  CAS  Google Scholar 

  11. Gelinck GH, Huitema HE, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JB, Geuns TC, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJ, de Leeuw DM. Nat Mater, 2004, 3: 106–110

    Article  CAS  Google Scholar 

  12. Das TK, Prusty S. Polym Plast Technol, 2012, 51: 1487–1500

    Article  CAS  Google Scholar 

  13. Lee YH, Lee JY, Lee DS. Synthetic Met, 2000, 114: 347–353

    Article  CAS  Google Scholar 

  14. Weng B, Shepherd RL, Crowley K, Killard AJ, Wallace GG. Analyst, 2010, 135: 2779–2789

    Article  CAS  Google Scholar 

  15. Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M. Appl PhysLett, 2005, 87: 203511

    Google Scholar 

  16. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Science, 2005, 309: 1215–1219

    Article  CAS  Google Scholar 

  17. Wang X, Zhi L, Muellen K. Nano Lett, 2008, 8: 323–327

    Article  CAS  Google Scholar 

  18. Xu Y, Bai H, LuG, Li C, Shi G. JAmChemSoc, 2008, 130: 5856–5857

    Article  CAS  Google Scholar 

  19. Cui C, Qian W, Yu Y, Kong C, Yu B, Xiang L, Wei F. J Am Chem Soc, 2014, 136: 2256–2259

    Article  CAS  Google Scholar 

  20. Renschler CL, Sylwester AP. Appl Phys Lett, 1987, 50: 1420

    Article  CAS  Google Scholar 

  21. Renschler CL, Sylwester AP, Salgado LV. J Mater Res, 1989, 4: 452–457

    Article  CAS  Google Scholar 

  22. Song C, Wang T, Qiu Y, Qiu J, Cheng H. J Porous Mater, 2008, 16: 197–203

    Article  Google Scholar 

  23. Rahaman MSA, Ismail AF, Mustafa A. Polym Degrad Stab, 2007, 92: 1421–1432

    Article  CAS  Google Scholar 

  24. Kim BS, Park JH, Hong N, Bae J, Yang CS, Shin K. JIndEng Chem, 2013, 19: 1631–1637

    CAS  Google Scholar 

  25. Jiao F, Zhang FJ, Zang YP, Zou Y, Di CA, Xu W, Zhu DB. Chem Com33 mun, 2014, 50: 2374–2376

    CAS  Google Scholar 

  26. Tao Y, Endo M, Inagaki M, Kaneko K. J Mater Chem, 2011, 21: 313–323

    Article  CAS  Google Scholar 

  27. Song L, Feng D, Fredin NJ, Yager KG, Jones RL, Wu Q, Zhao D, Vogt BD. ACS Nano, 2010, 4: 189–198

    Article  CAS  Google Scholar 

  28. Qiao Y, Guo Y, Yu C, Zhang F, Xu W, Liu Y, Zhu D. J Am Chem Soc, 2012, 134: 4084–4087

    Article  CAS  Google Scholar 

  29. Wang C, Zang Y, Qin Y, Zhang Q Sun Y, Di CA, Xu W, Zhu DB. Chem-EurJ, 2014, 20: 13755–13761

    Article  CAS  Google Scholar 

  30. Hong W, Xu Y, Lu G, Li C, Shi G. Electrochem Commun, 2008, 10: 1555–1558

    Article  CAS  Google Scholar 

  31. Wang X, Zhi L, Tsao N, Tomovic Z, Li J, Muellen K. Angew Chem Int Ed, 2008, 47: 2990–2992

    Article  CAS  Google Scholar 

  32. Zhang J, Zhao Y, Wei Z, Sun Y, He Y, Di CA, Xu W, Hu W, Liu Y, Zhu D. Adv Funct Mater, 2011, 21: 786–791

    Article  CAS  Google Scholar 

  33. Tuinstra F. JChemPhys, 1970, 53: 1126–1130

    CAS  Google Scholar 

  34. Ferrari AC, Robertson J. Phys Rev B, 2001, 64: 075414

    Article  Google Scholar 

  35. Schreiber M, Lutz T, Keeley GP, Kumar S, Boese M, Krishnamurthy S, Duesberg GS. Appl Surf Sci, 2010, 256: 6186–6190

    Article  CAS  Google Scholar 

  36. McEvoy N, Peltekis N, Kumar S, Rezvani E, Nolan H, Keeley GP, Blau WJ, Duesberg GS. Carbon, 2012, 50: 1216–1226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xu or Daoben Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, C., Chen, J. et al. The highly conducting carbon electrodes derived from spin-coated polyacrylonitrile films. Sci. China Chem. 59, 672–678 (2016). https://doi.org/10.1007/s11426-015-0453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0453-1

Keywords

Navigation