Skip to main content
Log in

Advanced non-precious electrocatalyst of the mixed valence CoO x nanocrystals supported on N-doped carbon nanocages for oxygen reduction

  • Communications
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Taking advantage of the nitrogen (N)-participation and large surface area of N-doped carbon nanocages (NCNCs), the CoO x nanocrystals are conveniently immobilized onto the NCNCs with high dispersion. The CoO x /NCNCs hybrid exists in the mixed valence with predominant CoO over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining ∼94% current density even after operation over 100 h. These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414: 345–352

    Article  CAS  Google Scholar 

  2. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294–303

    Article  CAS  Google Scholar 

  3. Gasteiger HA, Markovic NM. Just a dream-or future reality? Sicence, 2009, 324: 48–49

    Article  CAS  Google Scholar 

  4. Xiong W, Du F, Liu Y, Perez A, Supp M, Ramakrishnan TS, Dai LM, Jiang L. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J Am Chem Soc, 2010, 132: 15839–15841

    Article  CAS  Google Scholar 

  5. Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG. Fuel Cell Handbook. Federal Energy Technology Center, Morgantown WV, Pittsburgh PA, 1998. 159–165

    Google Scholar 

  6. Mcbreen J, Olender H, Srinivasan S. Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation. J Appl Electrochem, 1981, 11: 787–796

    Article  CAS  Google Scholar 

  7. Yang C. Resisting the nation state: the pacifist and anarchist tradition. Energy Policy, 2009, 37: 1805–1808

    Article  Google Scholar 

  8. Chung HT, Won HJ, Zelenay P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun, 2013, 4: 1922

    Article  Google Scholar 

  9. Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res, 2013, 46: 1878–1889

    Article  CAS  Google Scholar 

  10. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J, Wu G, Chung HT, Johnston CM, Zelenay P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci, 2011, 4: 114–130

    Article  CAS  Google Scholar 

  11. Chen ZW, Higgins D, Yu AP, Zhang L, Zhang JJ. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci, 2011, 4: 3167–3192

    Article  CAS  Google Scholar 

  12. Neburchilov V, Wang HJ, Martin JJ, Qu W. A review on air cathodes for zinc-air fuel cells. J Power Sources, 2010, 195: 1271–1291

    Article  CAS  Google Scholar 

  13. Liu J, Jiang LH, Zhang BS, Jin JT, Su DS, Wang SL, Sun SQ. Controllable synthesis of cobalt monoxide nanoparticles and the size-dependent activity for oxygen reduction reaction. ACS Catal, 2014, 4: 2998–3001

    Article  CAS  Google Scholar 

  14. Wang H, Liang Y, Li Y, Dai H. Co1−x S-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew Chem Int Ed, 2011, 50: 10969–10972

    Article  CAS  Google Scholar 

  15. Gong KP, Du F, Xia ZH, Durstock M, Dai LM. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764

    Article  CAS  Google Scholar 

  16. Dai LM. Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res, 2013, 46: 31–42

    Article  CAS  Google Scholar 

  17. Yang LJ, Jiang SJ, Zhao Y, Zhu L, Chen S, Wang XZ, Wu Q, Ma J, Ma YW, Hu Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed, 2011, 50: 7132–7135

    Article  CAS  Google Scholar 

  18. Zhao Y, Yang LJ, Chen S, Wang XZ, Ma YW, Wu Q, Jiang W. Jiang YF, Qian WJ, Hu Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J Am Chem Soc, 2013, 135: 1201–1204

    Article  CAS  Google Scholar 

  19. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci, 2012, 5: 6717–6731

    Article  CAS  Google Scholar 

  20. Pan XL, Fan ZL, Chen W, Ding YJ, Luo HY, Bao XH. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater, 2007, 6: 507–511

    Article  CAS  Google Scholar 

  21. Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Iulian Dugulan A, De Jong KP. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335: 835–838

    Article  CAS  Google Scholar 

  22. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater, 2011, 10: 780–786

    Article  CAS  Google Scholar 

  23. Guo SJ, Zhang S, Wu LH, Sun SH. Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew Chem, 2012, 124: 11940–11943

    Article  Google Scholar 

  24. Angew Chem Int Ed, 2012, 51: 11770–11773

  25. Liang YY, Wang HL, Diao P, Chang W, Hong GS, Li YG, Gong M, Xie LM, Zhou JG, Wang J, Regier TZ, Wei F, Dai HJ. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc, 2012, 134: 15849–15857

    Article  CAS  Google Scholar 

  26. Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Müllen K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc, 2012, 134: 9082–9085

    Article  CAS  Google Scholar 

  27. Su DS, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts. Chem Rev, 2013, 113: 5782–5816

    Article  CAS  Google Scholar 

  28. Yang W, Wang XL, Yang F, Yang C, Yang XR. Carbon nanotubes decorated with pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction. Adv Mater, 2008, 20: 2579–2587

    Article  CAS  Google Scholar 

  29. Li D, Kaner KB. Graphene-based materials. Science, 2008, 320: 1170–1171

    Article  CAS  Google Scholar 

  30. Yue B, Ma YW, Tao HS, Yu LS, Jian GQ, Wang XZ, Wang XS, Lu YN, Hu Z. CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem, 2008, 18: 1747–1750

    Article  CAS  Google Scholar 

  31. Jiang SJ, Ma YW, Jian GQ, Tao HS, Wang XZ, Fan YN, Lu YN, Hu Z, Chen Y. Facile construction of Pt-Co/CNx nanotube electrocatalysts and their application to the oxygen reduction reaction. Adv Mater, 2009, 21: 4953–4956

    Article  CAS  Google Scholar 

  32. Ma YW, Jiang SJ, Jian GQ, Tao HS, Yu LS, Wang XB, Wang XZ, Zhu JM, Hu Z, Chen Y. CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. Energy Environ Sci, 2009, 2: 224–229

    Article  CAS  Google Scholar 

  33. Jiang SJ, Zhu L, Ma YW, Wang XZ, Liu JG, Zhu JM, Fan YN, Zou ZG, Hu Z. Direct immobilization of Pt-Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance. J Power Sources, 2010, 195: 7578–7582

    Article  CAS  Google Scholar 

  34. Xie K, Qin XT, Wang XZ, Wang YN, Tao HS, Wu Q, Yang LJ, Hu Z. Carbon nanocages as supercapacitor electrode materials. Adv Mater, 2012, 24: 347–352

    Article  CAS  Google Scholar 

  35. Chen S, Bi JY, Zhao Y, Yang LJ, Zhang C, Ma YW, Wu Q, Wang XZ, Hu Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv Mater, 2012, 24: 5593–5597

    Article  CAS  Google Scholar 

  36. Barreca D, Massignan C. Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor by chemical vapor deposition. Chem Mater, 2001, 13: 588–593

    Article  CAS  Google Scholar 

  37. Khassin AA, Yurieva TM, Kaichev VV, Bukhtiyarov VI, Budneva AA, Paukshtis EA, Parmon VN. Metal-support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J Mol Catal A: Chem, 2001, 175: 189–204

    Article  CAS  Google Scholar 

  38. Paganin VA, Sitta E, Iwasita T, Vielstich W. Methanol crossover effect on the cathode potential of a direct PEM fuel cell. J Appl Electrochem, 2005, 35: 1239–1243

    Article  CAS  Google Scholar 

  39. Liu FQ, Wang CY. J Electrochem Soc, 2007, 154: B514–B522

    Article  CAS  Google Scholar 

  40. Feng H, Ma J, Hu Z. Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: a density functional study. J Mater Chem, 2010, 20: 1702–1708

    Article  CAS  Google Scholar 

  41. Liang YY, Wang HL, Zhou JG, Li YG, Wang J, Regier T, Dai HJ. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc, 2012, 134: 3517–3523

    Article  CAS  Google Scholar 

  42. Che RC, Liang CY, Shi HL, Zhou XG, Yang XN. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes. Nanotechnol, 2007, 18: 355705

    Article  Google Scholar 

  43. Ovshinsky SR, Fierro C, Reichman B, Mays W, Strebe J, Fetcenko MA, Zallen A, Hicks T. Catalyst for fuel cell oxygen electrodes. US Patent, US 7.097. 933, 2006

    Google Scholar 

  44. Zhang FX, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc, 2012, 134: 8348–8351

    Article  CAS  Google Scholar 

  45. Fu Q, Li WX, Yao YX, Liu HY, Su HY, Ma D, Gu XK, Chen LM, Wang Z, Zhang H, Wang HB, Bao XH. Interface-confined ferrous centers for catalytic oxidation. Science, 2010, 328: 1141–1144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xizhang Wang or Zheng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, L., Wu, Q. et al. Advanced non-precious electrocatalyst of the mixed valence CoO x nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Sci. China Chem. 58, 180–186 (2015). https://doi.org/10.1007/s11426-014-5279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5279-4

Keywords

Navigation