Skip to main content
Log in

Studies on the roles of vanadyl sulfate and sodium nitrite in catalytic oxidation of benzyl alcohol with molecular oxygen

  • Articles
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An efficient catalytic system consisting of vanadyl sulfate/sodium nitrite was disclosed previously for the oxidation of benzylic alcohols into aldehydes with molecular oxygen. However, the roles of catalyst components were not investigated. In this paper, we examined catalytic oxidation of benzyl alcohol as a model reaction, especially by infrared spectroscopy. The role of each component is discussed including nitrite, vanadyl, sulphate, and water. Sodium nitrite could be converted into nitrate and nitric acid. The vanadium(IV) could be smoothly oxidized into vanadium(V) under mild and acidic conditions without any organic ligands. The transformation of sulfate and bisulfate, the cessation of an induction period, and the oxidation of benzyl alcohol were closely interrelated. The multiple roles of water are discussed, including reduction of the induction period, participation in redox cycles of nitric compounds, deactivation of vanadium, and as a byproduct of oxidation. This study contributes to further development of aerobic oxidation using vanadium based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB. Largescale oxidations in the pharmaceutical industry. Chem Rev, 2006, 106: 2943–2989

    Article  CAS  Google Scholar 

  2. Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev, 2004, 104: 3037–3058

    Article  CAS  Google Scholar 

  3. Parmeggiani C, Cardona F. Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem, 2012, 14: 547–564

    Article  CAS  Google Scholar 

  4. Davis SE, Ide MS, Davis RJ. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem, 2013, 15: 17–45

    Article  CAS  Google Scholar 

  5. Piera J, Backvall JE. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer: a biomimetic approach. Angew Chem Int Ed, 2008, 47: 3506–3523

    Article  CAS  Google Scholar 

  6. Rehder D. Bioinorganic Vanadium Chemistry. Chichester: Wiley, 2008. 53–86

    Book  Google Scholar 

  7. Crans DC, Smee JJ, Gaidamauskas E, Yang LQ. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev, 2004, 104: 849–902

    Article  CAS  Google Scholar 

  8. Hirao T. Vanadium in modern organic synthesis. Chem Rev, 1997, 97: 2707–2724

    Article  CAS  Google Scholar 

  9. Shul’pin GB. Metal-catalyzed hydrocarbon oxygenations in solutions: the dramatic role of additives: a review. J Mol Catal A: Chem, 2002, 189: 39–66

    Article  Google Scholar 

  10. Kirihara M, Ochiai Y, Takizawa S, Takahata H, Nemoto H. Aerobic oxidation of α-hydroxycarbonyls catalysed by trichlorooxyvanadium: efficient synthesis of alpha-dicarbonyl compounds. Chem Commun, 1999: 1387–1388

    Google Scholar 

  11. Kodama S, Ueta Y, Yoshida J, Nomoto A, Yano S, Ueshima M, Ogawa A. Tetranuclear vanadium complex, (VO)4(hpic)4: a recyclable catalyst for oxidation of benzyl alcohols with molecular oxygen. Dalton Trans, 2009: 9708–9711

    Google Scholar 

  12. Maeda Y, Kakiuchi N, Matsumura S, Nishimura T, Kawamura T, Uemura S. Oxovanadium complex-catalyzed aerobic oxidation of propargylic alcohols. J Org Chem, 2002, 67: 6718–6724

    Article  CAS  Google Scholar 

  13. Hanson SK, Wu RL, Silks LA. Mild and selective vanadiumcatalyzed oxidation of benzylic, allylic, and propargylic alcohols using air. Org Lett, 2011, 13: 1908–1911

    Article  CAS  Google Scholar 

  14. Wigington BN, Drummond ML, Cundari TR, Thorn DL, Hanson SK, Scott SL. A biomimetic pathway for vanadium-catalyzed aerobic oxidation of alcohols: evidence for a base-assisted dehydrogenation mechanism. Chem Eur J, 2012, 18: 14981–14988

    Article  CAS  Google Scholar 

  15. Hanson SK, Baker RT, Gordon JC, Scott BL, Silks LA, Thorn DL. Mechanism of alcohol oxidation by dipicolinate vanadium(V): unexpected role of pyridine. J Am Chem Soc, 2010, 132: 17804–17816

    Article  CAS  Google Scholar 

  16. Sadaba I, Gorbanev YY, Kegnaes S, Putluru SSR, Berg RW, Riisager A. Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chem-CatChem 2013, 5: 284–293

    CAS  Google Scholar 

  17. Du ZT, Miao H, Ma H, Sun ZQ, Ma JP, Xu J. Trace water-promoted oxidation of benzylic alcohols with molecular oxygen catalyzed by vanadyl sulfate and sodium nitrite under mild conditions. Adv Synth Catal, 2009, 351: 558–562

    Article  CAS  Google Scholar 

  18. Du ZT, Ma JP, Ma H, Wang M, Huang YZ, Xu J. Vanadyl sulfate: a simple catalyst for oxidation of alcohols with molecular oxygen in combination with 2,2,6,6-tetramethyl-piperidyl-1-oxyl. Catal Commun, 2010, 11: 732–735

    Article  CAS  Google Scholar 

  19. Du ZT, Ma JP, Ma H, Gao J, Xu J. Synergistic effect of vanadiumphosphorus promoted oxidation of benzylic alcohols with molecular oxygen in water. Green Chem, 2010, 12: 590–592

    Article  CAS  Google Scholar 

  20. Ma JP, Du ZT, Xu J, Chu QH, Pang Y. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. ChemSusChem 2011, 4: 51–54

    Article  CAS  Google Scholar 

  21. He C, Zhang GH, Ke J, Zhang H, Miller JT, Kropf AJ, Lei AW. Labile Cu(I) catalyst/spectator Cu(II) species in copper-catalyzed C-C coupling reaction: operando IR, in situ XANES/EXAFS evidence and kinetic investigations. J Am Chem Soc, 2013, 135: 488–493

    Article  CAS  Google Scholar 

  22. Qiu CB, Jin LQ, Huang ZL, Tang ZQ, Lei AW, Shen ZL, Sun N, Mo WM, Hu BX, Hu XQ. Symbiotic catalysis relay: molecular oxygen activation catalyzed by multiple small molecules at ambient temperature and its mechanism. ChemCatChem 2012, 4: 76–80

    Article  CAS  Google Scholar 

  23. Yang HS, Finlayson-Pitts BJ. Infrared spectroscopic studies of binary solutions of nitric acid and water and ternary solutions of nitric acid, sulfuric acid, and water at room temperature: evidence for molecular nitric acid at the surface. J Phys Chem A, 2001, 105: 1890–1896

    Article  CAS  Google Scholar 

  24. Querry MR, Tyler IL. Reflectance and complex refractive-indexes in the infrared for aqueous-solutions of nitric acid. J Chem Phys, 1980, 72: 2495–2499

    Article  CAS  Google Scholar 

  25. Greenwood NN, Earnshaw A. Chemistry of the Element. 2nd Ed. Oxford: Butterworth-Heinemann, 1997. 454–457

    Google Scholar 

  26. Gavazov K, Simeonova Z, Alexandrov A. Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT). Talanta, 2000, 52: 539–544

    Article  CAS  Google Scholar 

  27. Nash KL, Sully KJ, Horn AB. Infrared spectroscopic studies of the low temperature interconversion of sulfuric acid hydrates. Phys Chem Chem Phys, 2000, 2: 4933–4940

    Article  CAS  Google Scholar 

  28. Nash KL, Sully KJ, Horn AB. Observations on the interpretation and analysis of sulfuric acid hydrate infrared spectra. J Phys Chem A, 2001, 105: 9422–9426

    Article  CAS  Google Scholar 

  29. Miller FA, Wilkins CH. Infrared spectra and characteristic frequencies of inorganic ions: their use in qualitative analysis. Anal Chem, 1952, 24: 1253–1294

    Article  CAS  Google Scholar 

  30. Castellan A, Bart JCJ, Cavallaro S. Nitric-acid reaction of cyclohexanol to adipic acid. Catal Today, 1991, 9: 255–283

    Article  CAS  Google Scholar 

  31. Richards RL. Vanadium: Inorganic and coordination chemistry. In: King RB, Eds. Encyclopedia of Inorganic Chemistry. 2nd Ed. New York: John Wiley & Sons, 2006

    Google Scholar 

  32. Jolivet JP. Metal Oxide Chemistry and Synthesis. From Solution to Solid State. Chichester: John Wiley & Sons, 2000. 115–118

    Google Scholar 

  33. Ritter JJ, Minieri PP. A new reaction of nitriles 1. Amides from alkenes and mononitriles. J Am Chem Soc, 1948, 70: 4045–4048

    Article  CAS  Google Scholar 

  34. Guerinot A, Reymond S, Cossy J. Ritter reaction: recent catalytic developments. Eur J Org Chem, 2012: 19–28

    Google Scholar 

  35. Strazzolini P, Runcio A. Oxidation of benzylic alcohols and ethers to carbonyl derivatives by nitric acid in dichloromethane. Eur J Org Chem, 2003: 526–536

    Google Scholar 

  36. Naimi-Jamal MR, Hamzeali H, Mokhtari J, Boy J, Kaupp G. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions. ChemSusChem 2009, 2: 83–88

    Article  CAS  Google Scholar 

  37. Aellig C, Girard C, Hermans I. Aerobic alcohol oxidations mediated by nitric acid. Angew Chem Int Ed, 2011, 50: 12355–12360

    Article  CAS  Google Scholar 

  38. Aellig C, Neuenschwander U, Hermans I. Acid-catalyzed decomposition of the benzyl nitrite intermediate in HNO3-mediated aerobic oxidation of benzyl alcohol. ChemCatChem 2012, 4: 525–529

    Article  CAS  Google Scholar 

  39. Joshi SR, Kataria KL, Sawant SB, Joshi JB. Kinetics of oxidation of benzyl alcohol with dilute nitric acid. Ind Eng Chem Res, 2005, 44: 325–333

    Article  CAS  Google Scholar 

  40. Littler JS, Waters WA. Oxidations of organic compounds with quinquevalent vanadium. 3. The oxidation of cyclohexanol. J Chem Soc, 1959: 4046–4052

    Google Scholar 

  41. Littler JS, Waters WA. Oxidations of organic compounds with quinquevalent vanadium. 5. A comparative study of the oxidation of alcohols and glycols by cerium(IV), vanadium(V), and chromium(VI). J Chem Soc, 1960: 2767–2772

    Google Scholar 

  42. Rocek J, Aylward DE. One-electron vs two-electron oxidationsvanadium(V) oxidation of cyclobutanols. J Am Chem Soc, 1975, 97: 5452–5456

    Article  CAS  Google Scholar 

  43. Kozhevnikov IV. PMo12−n VnO40 (3+n)− heteropolyanions as catalysts for aerobic oxidation. J Mol Catal A-Chem, 1997, 117: 151–158

    Article  CAS  Google Scholar 

  44. Neumann R, Khenkin AM. Molecular oxygen and oxidation catalysis by phosphovanadomolybdates. Chem Commun, 2006: 2529–2538

    Google Scholar 

  45. Atlamsani A, Bregeault JM, Ziyad M. Oxidation of 2-methylcyclohexanone and cyclohexanone by dioxygen catalyzed by vanadiumcomtaining heteropolyanions. J Org Chem, 1993, 58: 5663–5665

    Article  CAS  Google Scholar 

  46. Kirihara M, Takizawa S, Momose T. Highly chemoselective, oxyvanadiumcatalysed cleavage of alpha-hydroxy ketones. J Chem Soc, Perkin Trans 1, 1998: 7–8

    Google Scholar 

  47. Hanson SK, Baker RT, Gordon JC, Scott BL, Thorn DL. Aerobic oxidation of lignin models using a base metal vanadium catalyst. Inorg Chem, 2010, 49: 5611–5618

    Article  CAS  Google Scholar 

  48. Du ZT, Ma JP, Wang F, Liu JX, Xu J. Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chem, 2011, 13: 554–557

    Article  CAS  Google Scholar 

  49. Liu JX, Du ZT, Yang YL, Lu TL, Lu F, Xu J. Catalytic oxidative decarboxylation of malic acid into dimethyl malonate in methanol with dioxygen. ChemSusChem 2012, 5: 2151–2154

    Article  CAS  Google Scholar 

  50. Tang ZC, Deng WP, Wang YL, Zhu EZ, Wan XY, Zhang QH, Wang Y. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations. ChemSusChem 2014, 7: 1557–1567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Liu, J., Lu, T. et al. Studies on the roles of vanadyl sulfate and sodium nitrite in catalytic oxidation of benzyl alcohol with molecular oxygen. Sci. China Chem. 58, 114–122 (2015). https://doi.org/10.1007/s11426-014-5250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5250-4

Keywords

Navigation