Skip to main content
Log in

Surface complexation modeling of Eu(III) adsorption on silica in the presence of fulvic acid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Humic substances (HS) substantially affect heavy metal (M) adsorption on mineral surfaces. However, quantitative descriptions of ternary systems involving M, HS and mineral surfaces remain unclear. This study examines adsorption in a model ternary system including Eu(III), fulvic acid (FA) and silica, and describes the adsorption of Eu(III) and FA by combining a double-layer model (DLM) and the Stockholm humic model (SHM). SHM explains the binding of H+ and Eu3+ to FA and the DLM for FA and Eu(III) adsorption on silica. Experimental results showed that the presence of FA promotes Eu(III) adsorption at acidic pH values, but decreases it at basic pH values, which indicates the formation of ternary surface complexes. Modeling calculations have shown that two ternary surface complexes are required to describe the experimental results in which Eu3+ acts as a bridge between the surface site and FA. The present study suggests that the discrete-site approach to HS is a promising method for interpreting the adsorption data for M, HS and mineral ternary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryan ND, Abrahamsen L, Evans N, Warwick P, Buckau G, Weng L, Van Riemsdijk WH. The effects of humic substances on the transport of radionuclides: recent improvements in the prediction of behaviour and the understanding of mechanisms. Appl Geochem, 2012, 27: 378–389

    Article  CAS  Google Scholar 

  2. Tipping E. Cation Binding by Humic Substances. Cambridge: Cambridge University Press, 2002

    Book  Google Scholar 

  3. Schlautman MA, Morgan JJ. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: influence of solution chemistry. Geochim Cosmochim Ac, 1994, 58: 4293–4303

    Article  CAS  Google Scholar 

  4. Tan XL, Wang XK, Geckeis H, Rabung T. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRFLS, and batch techniques. Environ Sci Technol, 2008, 42: 6532–6537

    Article  CAS  Google Scholar 

  5. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol, 2009, 43: 5776–5782

    Article  CAS  Google Scholar 

  6. Tan XL, Fan QH, Wang XK, Grambow B. Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ Sci Technol, 2009, 43: 3115–3121

    Article  CAS  Google Scholar 

  7. Van Riemsdijk WH, Koopal LK, Kinniburgh DG, Benedetti MF, Weng L. Modeling the interactions between humics, ions, and mineral surfaces. Environ Sci Technol, 2006, 40: 7473–7480

    Article  Google Scholar 

  8. Kinniburgh DG, van Riemsdijk WH, Koopal LK, Borkovec M, Benedetti MF, Avena MJ. Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surf A, 1999, 151: 147–166

    Article  CAS  Google Scholar 

  9. Tipping E. Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem, 1998, 4: 3–47

    Article  CAS  Google Scholar 

  10. Gustafsson JP. Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J Colloid Interf Sci, 2001, 244: 102–112

    Article  CAS  Google Scholar 

  11. Gustafsson JP, Kleja DB. Modeling salt-dependent proton binding by organic soils with the NICA-donnan and Stockholm Humic Models. Environ Sci Technol, 2005, 39: 5372–5377

    Article  CAS  Google Scholar 

  12. Gustafsson JP, van Schaik JWJ. Cation binding in a mor layer: batch experiments and modelling. Eur J Soil Sci, 2003, 54: 295–310

    Article  CAS  Google Scholar 

  13. Dudal Y, Gérard F. Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories and applications. Earth-Sci Rev, 2004, 66: 199–216

    Article  CAS  Google Scholar 

  14. Milne CJ, Kinniburgh DG, Tipping E. Generic NICA-donnan model parameters for proton binding by humic substances. Environ Sci Technol, 2001, 35: 2049–2059

    Article  CAS  Google Scholar 

  15. Milne CJ, Kinniburgh DG, Van Riemsdijk WH, Tipping E. Generic NICA-donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol, 2003, 37: 958–971

    Article  CAS  Google Scholar 

  16. Filius JD, Meeussen JCL, Lumsdon DG, Hiemstra T, van Riemsdijk WH. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules. Geochim Cosmochim Ac, 2003, 67: 1463–1474

    Article  CAS  Google Scholar 

  17. Hiemstra T, Van Riemsdijk WH. A surface structural approach to ion adsorption: the charge distribution (CD) model. J Colloid Interf Sci, 1996, 179: 488–508

    Article  CAS  Google Scholar 

  18. Hiemstra T, Van Riemsdijk WH. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J Colloid Interf Sci, 1999, 210: 182–193

    Article  CAS  Google Scholar 

  19. Weng LP, Koopal LK, Hiemstra T, Meeussen JCL, Van Riemsdijk WH. Interactions of calcium and fulvic acid at the goethite-water interface. Geochim Cosmochim Ac, 2005, 69: 325–339

    Article  CAS  Google Scholar 

  20. Weng L, Van Riemsdijk WH, Koopal LK, Hiemstra T. Ligand and charge distribution (LCD) model for the description of fulvic acid adsorption to goethite. J Colloid Interface Sci, 2006, 302: 442–457

    Article  CAS  Google Scholar 

  21. Weng L, Van Riemsdijk WH, Hiemstra T. Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength. J Colloid Interface Sci, 2007, 314: 107–118

    Article  CAS  Google Scholar 

  22. Weng LP, Van Riemsdijk WH, Hiemstra T. Humic nanoparticles at the oxide-water interface: interactions with phosphate ion adsorption. Environ Sci Technol, 2008, 42: 8747–8752

    Article  CAS  Google Scholar 

  23. Weng L, Van Riemsdiik WH, Hiemstra T. Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Environ Sci Technol, 2009, 43: 7198–7204

    Article  CAS  Google Scholar 

  24. Weng L, Vega FA, Van Riemsdijk WH. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environ Sci Technol, 2011, 45: 8420–8428

    Article  CAS  Google Scholar 

  25. Schulthess CP, Huang CP. Humic and fulvic acid adsorption by silicon and aluminum oxide surfaces on clay minerals. Soil Sci Soc Am J, 1991, 55: 34–42

    Article  CAS  Google Scholar 

  26. Iler RK. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. New York: Wiley, 1979

    Google Scholar 

  27. Huber F, Lützenkirchen J. Uranyl retention on quartz-new experimental data and blind prediction using an existing surface complexation model. Aquat Geochem, 2009, 15: 443–456

    Article  CAS  Google Scholar 

  28. Guo Z, Su HY, Wu W. Sorption and desorption of uranium(VI) on silica: experimental and modeling studies. Radiochim Acta, 2009, 97: 133–140

    CAS  Google Scholar 

  29. Tao ZY, Yang YH, Sheng FL. Spectroscopic and structural characterization of a fulvic acid from weathered coal. Toxicol Environ Chem, 1995, 49: 45–56

    Article  CAS  Google Scholar 

  30. Hummel W. Nagra/PSI chemical thermodynamic data base 01/01, 2002

    Google Scholar 

  31. Gustafsson JP. Visual minteq version 3.0. Secondary Visual minteq version 3.0, 2010, http://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm

    Google Scholar 

  32. Dzombak DA, Morel FMM. Surface Complexation Modeling: Hydrous Ferric Oxide. New York: Wiley, 1990

    Google Scholar 

  33. Östhols E. Thorium sorption on amorphous silica. Geochim Cosmochim Ac, 1995, 59: 1235–1249

    Article  Google Scholar 

  34. Ronnback P, Astrom M, Gustafsson JP. Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, eastern sweden. Appl Geochem, 2008, 23: 1862–1880

    Article  Google Scholar 

  35. Tipping E. The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Ac, 1981, 45: 191–199

    Article  CAS  Google Scholar 

  36. Davis JA. Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim Cosmochim Ac, 1982, 46: 2381–2393

    Article  CAS  Google Scholar 

  37. Lenhart JJ, Honeyman BD. Uranium(VI) sorption to hematite in the presence of humic acid. Geochim Cosmochim Ac, 1999, 63: 2891–2901

    Article  CAS  Google Scholar 

  38. Sposito G. The Chemistry of Soils. New York: Oxford University Press, 1989

    Google Scholar 

  39. Norden M, Ephraim JH, Allard B. The influence of a fulvic acid on the adsorption of europium and strontium by alumina and quartz: effects of ph and ionic strength. Radiochim Acta, 1994, 65: 265–270

    CAS  Google Scholar 

  40. Ledin A, Karlsson S, Dulker A, Allard B. The adsorption of europium to colloidal iron oxyhydroxides and quartz-the impact of pH and an aquatic fulvic acid. Radiochim Acta, 1994, 66/67: 213–220

    CAS  Google Scholar 

  41. Fairhurst AJ, Warwick P, Richardson S. The effect of pH on europium-mineral interactions in the presence of humic acid. Radiochim Acta, 1995, 69: 103–111

    CAS  Google Scholar 

  42. Lippold H, Müller N, Kupsch H. Effect of humic acid on the pH-dependent adsorption of terbium (III) onto geological materials. Appl Geochem, 2005, 20: 1209–1217

    Article  CAS  Google Scholar 

  43. Hu P, Yin X, Zhao L, Li D. Sorption of Eu(III)onto nano-size silica-water interfaces. Sci China Ser D-Earth Sci, 2005, 48: 1942–1948

    Article  CAS  Google Scholar 

  44. Pathak PN, Choppin GR. Sorption studies of europium(III) on hydrous silica. J Radioanal Nucl Chem, 2006, 270: 277–283

    Article  CAS  Google Scholar 

  45. Takahashi Y, Murata M, Kimura T. Interaction of Eu(III) ion and non-porous silica: Irreversible sorption of Eu(III) on silica and hydrolysis of silica promoted by Eu(III). J Alloy Compd, 2006, 408–412: 1246–1251

    Article  Google Scholar 

  46. Ishida K, Kimura T, Saito T, Tanaka S. Adsorption of Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM). Environ Sci Technol, 2009, 43: 1744–1749

    Article  CAS  Google Scholar 

  47. Pathak PN, Choppin GR. Effect of complexing anions on europium sorption on suspended silica: a TRLFS study for ternary complex formation. Radiochim Acta, 2007, 95: 267–273

    Article  CAS  Google Scholar 

  48. Kelley C, Mielke RE, Dimaquibo D, Curtis AJ, DeWitt JG. Adsorption of Eu(III) onto roots of water hyacinth. Environ Sci Technol, 1999, 33: 1439–1443

    Article  CAS  Google Scholar 

  49. Ali MA, Dzombak DA. Effects of simple organic acids on sorption of Cu2+ and Ca2+ on goethite. Geochim Cosmochim Ac, 1996, 60: 291–304

    Article  CAS  Google Scholar 

  50. Schindler PW. Co-adsorption of metal ions and organic ligands: formation of ternary surface complexes. Rev Mineral Geochem, 1990, 23: 281–307

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiJun Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Chen, Z., Montavon, G. et al. Surface complexation modeling of Eu(III) adsorption on silica in the presence of fulvic acid. Sci. China Chem. 57, 1276–1282 (2014). https://doi.org/10.1007/s11426-014-5120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5120-0

Keywords

Navigation