Skip to main content
Log in

Synthesis, structure and bonding of the hypoelectronic cluster compound Sr3Tl5

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The Sr3Tl5 phase was prepared by high temperature synthesis techniques through reaction of the high purity elements in the welded Nb tubes. The structure established through X-ray structural analysis shows the compound is a good hypoelectronic trielide example of the Pu3Pd5 structural type in which skeletal electron count is lower than in a traditional Zintl phase (Cmcm, Z = 4; a = 10.604(2) Å, b = 8.675(2) Å, and c = 10.985(2) Å; V = 1010.5(3) Å3). The strontium size and the compound's polarity appear responsible for this thallium phase crystallization in the Pu3Pd5 family type rather than the isoelectronic Sr3In5 version. A first-principle electronic structure calculation (LMTO) demonstrates that the strontium atoms participate substantially in Sr-Tl bonding in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kauzlarich S. Ed. Chemistry, tructure and bonding of Zintl phases and ions. VCH Publishers, New York, 1996

    Google Scholar 

  2. Miller GJ, Lee CS, Choe W. in Inorganic chemistry highlights. Meyer G, Naumann D, Wesemann L. Eds. Germany: Wiley-VCH, Weinheim, 2002, 21–53

    Google Scholar 

  3. Corbett JD. Polyanionic clusters and networks of the early p-element metals in the solid state: Beyond the Zintl boundary. Angew Chem Int Ed, 2000, 39: 670–690

    Article  CAS  Google Scholar 

  4. Corbett JD. Exploratory synthesis: The fascinating and diverse chemistry of polar intermetallic phases. Inorg Chem, 2010, 49: 13–18

    Article  CAS  Google Scholar 

  5. Zintl E. Intermrtallische verbindungen. Angew Chem, 1939, 52: 1–6

    Article  CAS  Google Scholar 

  6. Corbett JD. Polyatomic Zintl anions of the post-transition elements. Chem Rev, 1985, 85: 383–397

    Article  CAS  Google Scholar 

  7. Garcia E, Corbett JD. A remarkably diverse interstitial chemistry of the polar intermetallic phase zirconium-antimony (Zr5Sb3). Inorg Chem, 1988, 27: 2907–2908

    Article  CAS  Google Scholar 

  8. Nesper R. Bonding patterns in intermetallic compounds. Angew Chem Int Ed, 1991, 30: 789–817

    Article  Google Scholar 

  9. Dong ZC, Corbett JD. Na2K21Tl19, a novel thallium compound containing isolated Tl5 7− and Tl9 9− groups. a new hypoelectronic cluster. J Am Chem Soc, 1994, 116: 3429–3435

    Article  CAS  Google Scholar 

  10. Sevov SC, Corbett JD. A remarkable hypoelectronic indium cluster in K8In11. Inorg Chem, 1991, 30: 4875–4877

    Article  CAS  Google Scholar 

  11. Dong ZC, Corbett JD. Unusual icosahedral cluster compounds: Open-shell Na4A6Tl13 (A = K, Rb, Cs) and metallic Zintl phase Na3K8Tl13 (how does chemistry work in solids?). J Am Chem Soc, 1995, 117: 6447–6455

    Article  CAS  Google Scholar 

  12. Dong ZC, Corbett JD. Na23K9Tl15.3: An unusual Zintl compound containing apparent Tl5 7−, Tl4 8−, Tl3 7−, and Tl5− anions. Inorg Chem, 1996, 35: 3107–3112

    Article  CAS  Google Scholar 

  13. Bruzzone G. MX4 compounds of alkaline earth metals with IIIB group elements. Acta Crystallogr, 1965, 18: 1081–1082

    Article  CAS  Google Scholar 

  14. Seo DK, Corbett JD. Synthesis, structure, and bonding of open-shell Sr3In5: An unusual electron deficiency in an indium network, beyond the Zintl boundary. J Am Chem Soc, 2001, 123: 4512–4518

    Article  CAS  Google Scholar 

  15. Seo DK, Corbett JD. Synthesis, structure, and bonding of hypoelectronic SrIn4: direct example of a dominant size effect in structure selection. J Am Chem Soc, 2000, 122: 9621–9627

    Article  CAS  Google Scholar 

  16. Dai JC, Gupta S, Corbett JD. Synthesis, structure, and bonding of BaTl4. size effects on encapsulation of cations in electron-poor metal networks. Inorg Chem, 2011, 50: 238–244

    Article  CAS  Google Scholar 

  17. Wendorff M, Röhr C. Binre indide AInx (x = 1, 2, 4; A = Ca, Sr, Ba, K, Rb)-untersuchungen zu strukturchemie und chemischer bindung. Z Anorg Allg Chem, 2005, 631: 338–349

    Article  CAS  Google Scholar 

  18. Cromer D. Plutonium-palladium Pu3Pd5. Acta Crystallogr, 1976, B32: 1930–1932

    CAS  Google Scholar 

  19. Zhao JT, Corbett JD. Square pyramidal clusters in La3In5 and Y3In5. La3In5 as a metallic Zintl phase. Inorg Chem, 1995, 34: 378–383

    Article  CAS  Google Scholar 

  20. Klem MT, Vaughey JT, Harp JG, Corbett JD. A3Tt5 phases Sr3Sn5, Ba3Pb5, and La3Sn5. structure and bonding in a series of isotypic metallic compounds with increased electron count and their comparison with the nominal Zintl phase La3In5. Inorg Chem, 2001, 40: 7020–7026

    Article  CAS  Google Scholar 

  21. Zürcher F, Nesper R, Hoffmann S, Fässler TF. Novel arachno-type X5 6− Zintl anions in Sr3Sn5, Ba3Sn5, and Ba3Pb5 and charge influence on Zintl clusters. Z Anorg Allg Chem, 2001, 627: 2211–2219

    Article  Google Scholar 

  22. Cordier G, Schäfer H, Stetler M. Elektronenmangelverbindungen des galliums zur kenntnis von Ca3Ga5. Z Anorg Allg Chem, 1986, 539: 33–38

    Article  CAS  Google Scholar 

  23. Dai JC, Corbett JD. Substitution of Au or Hg into BaTl2 and BaIn2. new ternary examples of smaller CeCu2-type intermetallic phases. Inorg Chem, 2006, 45: 2104–2111

    Article  CAS  Google Scholar 

  24. Dai JC, Corbett JD. Transformation of AeIn4 indides (Ae = Ba, Sr) into an AeAu2In2 structure type through gold substitution. Inorg Chem, 2007, 46: 4592–4598

    Article  CAS  Google Scholar 

  25. Dai JC, Gupta S, Gourdon O, Kim HJ, Corbett JD. BaHg2Tl2. An unusual polar intermetallic phase with strong differentiation between the neighboring elements mercury and thallium. J Am Chem Soc, 2009, 131: 8677–8682

    Article  CAS  Google Scholar 

  26. SMART, Bruker AXS, Inc., Madison, WI, 1996

  27. Blessing RH. An empirical correction for absorption anisotropy. Acta Crystallogr, 1995, A51: 33–38

    Article  Google Scholar 

  28. SHELXTL 6.1, Bruker AXS, Inc., Madison, WI, 1996

  29. Andersen OK. Linear methods in band theory. Phys Rev B, 1975, 12: 3060–3083

    Article  CAS  Google Scholar 

  30. Andersen OK, Jepsen O. Explicit, first-principles tight-binding theory. Phys Rev Lett, 1984, 53: 2571–2574

    Article  CAS  Google Scholar 

  31. Andersen OK, Jepsen O, Glötzel D. In Highlights of Condensed Matter Theory. Bassani F, Fumi F, Tosi MP. Eds. North Holland: New York, 1985

    Google Scholar 

  32. Skriver HL. The LMTO Method. Berlin: Springer, 1984

    Book  Google Scholar 

  33. Jepsen O, Andersen OK. The stuttgart TB-LMTO program, Version 4.7. Max-Plank-Institut für Festkörperforschung, Stuttgart, Germany, 1994

    Google Scholar 

  34. von Barth U, Hedin L. A local exchange-correlation potential for the spin polarized case. i. J Phys C, 1972, 5: 1629–1642

    Article  Google Scholar 

  35. Koelling DD, Harmon BN. A technique for relativistic spin-polarised calculations. J Phys C, 1977, 10: 3107–3114

    Article  CAS  Google Scholar 

  36. Jepsen O, Andersen OK. Calculated electronic structure of the sandwich d1 metals LaI2 and CeI2: application of new LMTO techniques. Z Phys B, 1995, 97: 35–47

    Article  CAS  Google Scholar 

  37. Lambrecht WRL, Andersen OK. Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys Rev B, 1986, 34: 2439–2449

    Article  CAS  Google Scholar 

  38. Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for brillouin-zone integrations. Phys Rev B, 1994, 49: 16223–16233

    Article  Google Scholar 

  39. Gupta S, Ganguli AK. Evidence of incipient bond-stretching isomerism in Sr2.04(1)Ca0.96(1)Sn5 from variable-temperature structural studies. Inorg Chem, 2005, 44: 7443–7448

    Article  CAS  Google Scholar 

  40. Rhode M, Wendorff M, Röhr C. Verbindungen A3M5 (A = erdalkalimetall, M = triel/tetrel): eine fallstudie zur strukturellen und elektronischen stabilität polarer intermetallischer phasen. Z Anorg Allg Chem, 2006, 632: 1195–1205

    Article  CAS  Google Scholar 

  41. Kim SJ, Fässler TF. Influence of element substitution on the cluster arrangement in the novel structures Ca3Tl5, Sr3Tl5, and Sr3Sn5−x Tlx (x = 1.8 and 2.2). Z Anorg Allg Chem, 2009, 635: 1925–1932

    Article  CAS  Google Scholar 

  42. Wells AF. Structural Inorganic Chemistry. Oxford: Clarendon Press, 5th ed, 1984, 1304

    Google Scholar 

  43. Dong ZC, Corbett JD. K18Tl20Au3, a novel derivative of K8Tl11 with the unprecedented polyanion Tl9Au2 9−, the parent Tl11 7− and an isolated Au ion. Inorg Chem, 1995, 34: 5042–5048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingCao Dai.

Additional information

Dedicated to Professor John D. Corbett on the occasions of his 85th birthday

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Luo, G., Xiao, Z. et al. Synthesis, structure and bonding of the hypoelectronic cluster compound Sr3Tl5 . Sci. China Chem. 55, 131–137 (2012). https://doi.org/10.1007/s11426-011-4382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4382-z

Keywords

Navigation