Skip to main content
Log in

Virtual homological eigenvalues and the Weil-Petersson translation length

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For any pseudo-Anosov automorphism on an orientable closed surface, an inequality is established by bounding certain growth of virtual homological eigenvalues with the Weil-Petersson translation length. The new inequality fits nicely with other known inequalities due to Kojima and McShane (2018) and Lê (2014). The new quantity to be considered is the square sum of the logarithmic radii of the homological eigenvalues (with multiplicity) outside the complex unit circle, called the homological Jensen square sum. The main theorem is as follows. For any cofinal sequence of regular finite covers of a given surface, together with lifts of a given pseudo-Anosov, the homological Jensen square sum of the lifts grows at most linearly fast compared with the covering degree, and the square root of the growth rate is at most \(1/\sqrt {4\pi } \) times the Weil-Petersson translation length of the given pseudo-Anosov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baik H, Shokrieh F, Wu C X. Limits of canonical forms on towers of Riemann surfaces. J Reine Angew Math, 2020, 764: 287–304

    Article  MathSciNet  MATH  Google Scholar 

  2. Bridson M R, Haefliger A. Metric Spaces of Non-Positive Curvature. Grundlehren der mathematischen Wissenschaften, vol. 319. Berlin: Springer-Verlag, 1999

    MATH  Google Scholar 

  3. Everest G, Ward T. Heights of Polynomials and Entropy in Algebraic Dynamics. London: Springer-Verlag, 1999

    Book  MATH  Google Scholar 

  4. Fried D. Entropy and twisted cohomology. Topology, 1986, 25: 455–470

    Article  MathSciNet  MATH  Google Scholar 

  5. Gutt J. Normal forms for symplectic matrices. Port Math, 2014, 71: 109–139

    Article  MathSciNet  MATH  Google Scholar 

  6. Habermann L, Jost J. Riemannian metrics on Teichmüller space. Manuscripta Math, 1996, 89: 281–306

    Article  MathSciNet  MATH  Google Scholar 

  7. Hubbard J H. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics: Volume 1: Teichmüller Theory. Ithaca: Matrix Editions, 2006

    MATH  Google Scholar 

  8. Humphreys J E. Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. New York-Berlin: Springer-Verlag, 1972

    MATH  Google Scholar 

  9. Kazhdan D A. On arithmetic varieties. In: Lie Groups and Their Representations. New York: Halsted, 1975, 151–217

    Google Scholar 

  10. Kojima S, McShane G. Normalized entropy versus volume for pseudo-Anosovs. Geom Topol, 2018, 22: 2403–2426

    Article  MathSciNet  MATH  Google Scholar 

  11. Kurokawa N, Lalin M, Ochiai H. Higher Mahler measures and zeta functions. Acta Arith, 2008, 135: 269–297

    Article  MathSciNet  MATH  Google Scholar 

  12. Lê T T Q. Homology torsion growth and Mahler measure. Comment Math Helv, 2014, 89: 719–757

    Article  MathSciNet  MATH  Google Scholar 

  13. Lê T T Q. Growth of homology torsion in finite coverings and hyperbolic volume. Ann Inst Fourier (Grenoble), 2018, 68: 611–645

    Article  MathSciNet  MATH  Google Scholar 

  14. Linch M. A comparison of metrics on Teichmüller space. Proc Amer Math Soc, 1974, 43: 349–352

    MathSciNet  MATH  Google Scholar 

  15. Liu Y. Virtual homological spectral radii for automorphisms of surfaces. J Amer Math Soc, 2020, 33: 1167–1227

    Article  MathSciNet  MATH  Google Scholar 

  16. Lück W. L2-Invariants: Theory and Applications to Geometry and K-Theory. Berlin-Heidelberg: Springer-Verlag, 2002

    Book  MATH  Google Scholar 

  17. Manning A. Topological entropy and the first homology group. In: Dynamical Systems. Lecture Notes in Mathematics, vol. 468. Berlin: Springer, 1975, 185–190

    MATH  Google Scholar 

  18. McMullen C T. Entropy on Riemann surfaces and the Jacobians of finite covers. Comment Math Helv, 2013, 88: 953–964

    Article  MathSciNet  MATH  Google Scholar 

  19. Royden H L. Invariant metrics on Teichmüller space. In: Contributions to Analysis. A Collection of Papers Dedicated to Lipman Bers. New York-London: Academic Press, 1974, 393–399

    Google Scholar 

  20. Siegel C L. Symplectic Geometry. New York-London: Academic Press, 1964

    MATH  Google Scholar 

  21. Wolpert S A. The Weil-Petersson metric geometry. In: Handbook of Teichmüller Theory, Vol. II. IRMA Lectures in Mathematics and Theoretical Physics, vol. 13. Zürich: Eur Math Soc, 2009, 47–64

    Chapter  Google Scholar 

  22. Yomdin Y. Volume growth and entropy. Israel J Math, 1987, 57: 285–300

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11925101) and National Key R&D Program of China (Grant No. 2020YFA0712800). The author thanks the referees for careful proofreading and great suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Virtual homological eigenvalues and the Weil-Petersson translation length. Sci. China Math. 66, 2119–2132 (2023). https://doi.org/10.1007/s11425-022-2051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2051-8

Keywords

MSC(2020)

Navigation