Skip to main content
Log in

Maurer-Cartan characterizations and cohomologies of compatible Lie algebras

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we give Maurer-Cartan characterizations as well as a cohomology theory for compatible Lie algebras. Explicitly, we first introduce the notion of a bidifferential graded Lie algebra and thus give Maurer-Cartan characterizations of compatible Lie algebras. Then we introduce a cohomology theory of compatible Lie algebras and use it to classify infinitesimal deformations and abelian extensions of compatible Lie algebras. In particular, we introduce the reduced cohomology of a compatible Lie algebra and establish the relation between the reduced cohomology of a compatible Lie algebra and the cohomology of the corresponding compatible linear Poisson structures introduced by Dubrovin and Zhang (2001) in their study of bi-Hamiltonian structures. Finally, we use the Maurer-Cartan approach to classify nonabelian extensions of compatible Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao Y H, Ye Y. Cohomology structure for a Poisson algebra: I. J Algebra Appl, 2016, 15: 1650034

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolsinov A V. Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution. Math USSR Izv, 1992, 38: 69–90

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolsinov A V, Borisov A V. Compatible Poisson brackets on Lie algebras. Math Notes, 2002, 72: 10–30

    Article  MathSciNet  MATH  Google Scholar 

  4. Chevalley C, Eilenberg S. Cohomology theory of Lie groups and Lie algebras. Trans Amer Math Soc, 1948, 63: 85–124

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorfman I. Dirac Structures and Integrability of Nonlinear Evolution Equations. Chichester: Wiley, 1993

    Google Scholar 

  6. Dotsenko V V, Khoroshkin A S. Character formulas for the operad of two compatible brackets and for the bi-Hamiltonian operad. Funct Anal Appl, 2007, 41: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubrovin B, Liu S Q, Zhang Y J. Bihamiltonian cohomologies and integrable hierarchies II: The tau structures. Comm Math Phys, 2018, 361: 467–524

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubrovin B, Zhang Y J. Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. arXiv:0108160v1, 2001

  9. Eilenberg S, Maclane S. Cohomology theory in abstract groups. II. Group extensions with non-abelian kernel. Ann of Math (2), 1947, 48: 326–341

    Article  MathSciNet  MATH  Google Scholar 

  10. Flato M, Gerstenhaber M, Voronov A A. Cohomology and deformation of Leibniz pairs. Lett Math Phys, 1995, 34: 77–90

    Article  MathSciNet  MATH  Google Scholar 

  11. Frégier Y. Non-abelian cohomology of extensions of Lie algebras as Deligne groupoid. J Algebra, 2014, 398: 243–257

    Article  MathSciNet  MATH  Google Scholar 

  12. Gelfand I M, Dorfman I. Hamiltonian operators and algebraic structures related to them. Funct Anal Appl, 1979, 13: 248–262

    Article  Google Scholar 

  13. Gerstenhaber M. The cohomology structure of an associative ring. Ann of Math (2), 1963, 78: 267–288

    Article  MathSciNet  MATH  Google Scholar 

  14. Golubchik I Z, Sokolov V V. Compatible Lie brackets and integrable equations of the principal chiral model type. Funct Anal Appl, 2002, 36: 172–181

    Article  MathSciNet  MATH  Google Scholar 

  15. Golubchik I Z, Sokolov V V. Factorization of the loop algebras and compatible Lie brackets. J Nonlinear Math Phys, 2005, 12: 343–350

    Article  MathSciNet  MATH  Google Scholar 

  16. Golubchik I Z, Sokolov V V. Compatible Lie brackets and the Yang-Baxter equation. Theoret and Math Phys, 2006, 146: 159–169

    Article  MathSciNet  MATH  Google Scholar 

  17. Guan A, Lazarev A, Sheng Y H, et al. Review of deformation theory I: Concrete formulas for deformations of algebraic structures. Adv Math (China), 2020, 49: 257–277

    MathSciNet  MATH  Google Scholar 

  18. Harrison D K. Commutative algebras and cohomology. Trans Amer Math Soc 1962, 104: 191–204

    Article  MathSciNet  MATH  Google Scholar 

  19. Hochschild G. On the cohomology groups of an associative algebra. Ann of Math (2), 1945, 46: 58–67

    Article  MathSciNet  MATH  Google Scholar 

  20. Kosmann-Schwarzbach Y, Magri F. Poisson-Nijenhuis structures. Ann Inst Henri Poincaré Ser A, 1990, 53: 35–81

    MathSciNet  MATH  Google Scholar 

  21. Laurent-Gengoux C, Pichereau A, Vanhaecke P. Poisson Structures. Grundlehren der mathematischen Wissenschaften, vol. 347. Berlin-Heidelberg: Springer, 2013

    MATH  Google Scholar 

  22. Liu S Q, Zhang Y J. Bihamiltonian cohomologies and integrable hierarchies I: A special case. Comm Math Phys, 2013, 324: 897–935

    Article  MathSciNet  MATH  Google Scholar 

  23. Magri F. A simple model of the integrable Hamiltonian equation. J Math Phys, 1978, 19: 1156–1162

    Article  MathSciNet  MATH  Google Scholar 

  24. Nijenhuis A, Richardson R W. Deformations of Lie algebra structures. J Math Mech, 1967, 17: 89–105

    MathSciNet  MATH  Google Scholar 

  25. Odesskii A V, Sokolov V V. Compatible Lie brackets related to elliptic curve. J Math Phys, 2006, 47: 013506

    Article  MathSciNet  MATH  Google Scholar 

  26. Panasyuk A. Compatible Lie brackets: Towards a classification. J Lie Theory, 2014, 24: 561–623

    MathSciNet  MATH  Google Scholar 

  27. Reyman A G, Semenov-Tian-Shansky M A. Compatible Poisson structures for Lax equations: An r-matrix approach. Phys Lett A, 1988, 130: 456–460

    Article  MathSciNet  Google Scholar 

  28. Strohmayer H. Operads of compatible structures and weighted partitions. J Pure Appl Algebra, 2008, 212: 2522–2534

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsyganov A V. Compatible Lie-Poisson brackets on the Lie algebras e(3) and so(4). Theoret Math Phys, 2007, 151: 459–473

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu M-Z, Bai C-M. Compatible Lie bialgebras. Commun Theor Phys (Beijing), 2015, 63: 653–664

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11901501, 11922110 and 11931009). Chengming Bai was supported by the Fundamental Research Funds for the Central Universities and Nankai Zhide Foundation. Jiefeng Liu was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1002000) and the Fundamental Research Funds for the Central Universities (Grant No. 2412022QD033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Sheng, Y. & Bai, C. Maurer-Cartan characterizations and cohomologies of compatible Lie algebras. Sci. China Math. 66, 1177–1198 (2023). https://doi.org/10.1007/s11425-021-2014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2014-5

Keywords

MSC(2020)

Navigation