Skip to main content
Log in

Comparison theorems for GJMS operators

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we compare the first order fractional GJMS (see Graham et al. (1992)) operator P1 with the conformal Laplacian P2, on the conformal infinity of a Poincaré-Einstein manifold. We derive some inequalities between the Yamabe constants and the first eigenvalues associated with P1 and P2, and prove some rigidity theorems by characterizing the equalities. Similarly, some comparison theorems between P2 and the Paneitz operator P4 or the 6th order GJMS operator P6 are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almaraz S. Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow. J Differential Equations, 2015, 259: 2626–2694

    Article  MathSciNet  Google Scholar 

  2. Beckner W. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann of Math (2), 1993, 138: 213–243

    Article  MathSciNet  Google Scholar 

  3. Case J, Chang S-Y A. On the fractional GJMS operators. Comm Pure Appl Math, 2016, 69: 1017–1061

    Article  MathSciNet  Google Scholar 

  4. Chen D, Wang F, Zhang X. Eigenvalue estimate of the Dirac operator and rigidity of Poincaré-Einstein metrics. Math Z, 2019, 293: 485–502

    Article  MathSciNet  Google Scholar 

  5. Chen S-Y. Conformal deformation to scalar flat metrics with constant mean curvature on the boundary in higher dimensions. ArXiv:0912.1302v2, 2009

  6. Chen X, Lai M, Wang F. Escobar-Yamabe compactifications for Poincaré-Einstein manifolds and rigidity theorems. Adv Math, 2019, 343: 16–35

    Article  MathSciNet  Google Scholar 

  7. Chruściel P, Delay E, Lee J, et al. Boundary regularity of conformally compact Einstein metrics. J Differential Geom, 2005, 69: 111–136

    Article  MathSciNet  Google Scholar 

  8. del Mar González M, Qing J. Fractional conformal Laplacians and fractional Yamabe problems. Anal PDE, 2013, 6: 1535–1576

    Article  MathSciNet  Google Scholar 

  9. Escobar J. Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann of Math (2), 1992, 136: 1–50

    Article  MathSciNet  Google Scholar 

  10. Escobar J. Addendum, Ann of Math (2), 1994, 139: 749–750

    Article  MathSciNet  Google Scholar 

  11. Escobar J. Conformal metrics with prescribed mean curvature on the boundary. Calc Var Partial Differential Equations, 1996, 4: 559–592

    Article  MathSciNet  Google Scholar 

  12. Graham C R. Volume renormalization for singular Yamabe metrics. Proc Amer Math Soc, 2017, 145: 1781–1792

    Article  MathSciNet  Google Scholar 

  13. Graham C R, Jenne R, Mason L J, et al. Conformally invariant powers of the Laplacian, I: Existence. J Lond Math Soc (2), 1992, 46: 557–565

    Article  MathSciNet  Google Scholar 

  14. Graham C R, Zworski M. Scattering matrix in conformal geometry. Invent Math, 2003, 152: 89–118

    Article  MathSciNet  Google Scholar 

  15. Guillarmou C, Qing J. Spectral characterization of Poincaré-Einstein manifolds with infinity of positive Yamabe type. Int Math Res Not IMRN, 2010, 9: 1720–1740

    MATH  Google Scholar 

  16. Gursky M J, Han Q. Non-existence of Poincaré-Einstein manifolds with prescribed conformal infinity. Geom Funct Anal, 2017, 27: 863–879

    Article  MathSciNet  Google Scholar 

  17. Gursky M J, Hang F, Lin Y-J. Riemannian manifolds with positive Yamabe invariant and Paneitz operator. Int Math Res Not IMRN, 2016, 2016: 1348–1367

    Article  MathSciNet  Google Scholar 

  18. Gursky M J, Malchiodi A. A strong maximum principle for the Paneitz operator and a non-local flow for the Q-curvature. J Eur Math Soc (JEMS), 2015, 17: 2137–2173

    Article  MathSciNet  Google Scholar 

  19. Hang F, Yang P. Sign of Green’s function of Paneitz operators and the Q curvature. Int Math Res Not IMRN, 2015, 2015: 9775–9791

    Article  MathSciNet  Google Scholar 

  20. Joshi M, Sá Barreto A. Inverse scattering on asymptotically hyperbolic manifolds. Acta Math, 2000, 184: 41–86

    Article  MathSciNet  Google Scholar 

  21. Juhl A. Explicit formulas for GJMS-operators and Q-curvatures. Geom Funct Anal, 2013, 23: 1278–1370

    Article  MathSciNet  Google Scholar 

  22. Lee J. The spectrum of an asymptotically hyperbolic Einstein manifold. Comm Anal Geom, 1995, 3: 253–271

    Article  MathSciNet  Google Scholar 

  23. Marques F. Conformal deformations to scalar-flat metrics with constant mean curvature on the boundary. Comm Anal Geom, 2007, 15: 381–405

    Article  MathSciNet  Google Scholar 

  24. Mayer M, Ndiaye C B. Barycenter technique and the Riemann mapping problem of Escobar. J Differential Geom, 2017, 107: 519–560

    Article  MathSciNet  Google Scholar 

  25. Mazzeo R, Melrose R. Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J Funct Anal, 1987, 75: 260–310

    Article  MathSciNet  Google Scholar 

  26. Raulot S. Scalar flat compactifications of Poincaré-Einstein manifolds and applications. ArXiv:1909.08274, 2019

  27. Witten E, Yau S T. Connectedness of the boundary in the AdS/CFT correspondence. Adv Theor Math Phys, 1999, 3: 1635–1655

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11871331 and 11571233). The second author was supported by National Natural Science Foundation of China (Grant No. 11871331). The first author thanks Professor Sun-Yung Alice Chang for helpful discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhou, H. Comparison theorems for GJMS operators. Sci. China Math. 64, 2479–2494 (2021). https://doi.org/10.1007/s11425-020-1689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1689-1

Keywords

MSC(2010)

Navigation