Skip to main content
Log in

Minimal Lagrangian submanifolds of the complex hyperquadric

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We introduce a structural approach to study Lagrangian submanifolds of the complex hyperquadric in arbitrary dimension by using its family of non-integrable almost product structures. In particular, we define local angle functions encoding the geometry of the Lagrangian submanifold at hand. We prove that these functions are constant in the special case that the Lagrangian immersion is the Gauss map of an isoparametric hypersurface of a sphere and give the relation with the constant principal curvatures of the hypersurface. We also use our techniques to classify all minimal Lagrangian submanifolds of the complex hyperquadric which have constant sectional curvatures and all minimal Lagrangian submanifolds for which all local angle functions, respectively all but one, coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cartan E. Sur quelques familles remarquables d’hypersurfaces. Oeuvres Complètes, 1939, 2: 1481–1492

    MATH  Google Scholar 

  2. Castro I, Urbano F. Minimal Lagrangian surfaces in S2 × S2. Comm Anal Geom, 2017, 15: 217–248

    Article  Google Scholar 

  3. Chen B-Y. Riemannian geometry of Lagrangian submanifolds. Taiwanese J Math, 2001, 5: 681–723

    Article  MathSciNet  Google Scholar 

  4. Chen B-Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications. Hackensack: World Scientific, 2011

    Book  Google Scholar 

  5. Chen B-Y, Ogiue K. On totally real submanifolds. Trans Amer Math Soc, 1974, 193: 257–266

    Article  MathSciNet  Google Scholar 

  6. do Carmo M, Dajczer M. Rotation hypersurfaces in spaces of constant curvature. Trans Amer Math Soc, 1983, 277: 685–709

    Article  MathSciNet  Google Scholar 

  7. Ejiri N. Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms. Proc Amer Math Soc, 1982, 84: 243–246

    MathSciNet  MATH  Google Scholar 

  8. Ge J, Tang Z. Geometry of isoparametric hypersurfaces in Riemannian manifolds. Asian J Math, 2014, 18: 117–125

    Article  MathSciNet  Google Scholar 

  9. Hiepko S. Eine innere Kennzeichnung der verzerrten Produkte. Math Ann, 1979, 241: 209–215

    Article  MathSciNet  Google Scholar 

  10. Li H, Ma H, Wei G. A class of minimal Lagrangian submanifolds in complex hyperquadrics. Geom Dedicata, 2012, 158: 137–148

    Article  MathSciNet  Google Scholar 

  11. Ma H, Ohnita Y. On Lagrangian submanifolds in complex hyperquadrics and isoparametric hypersurfaces in spheres. Math Z, 2009, 261: 749–785

    Article  MathSciNet  Google Scholar 

  12. Ma H, Ohnita Y. Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces. I. J Differential Geom, 2014, 97: 275–348

    Article  MathSciNet  Google Scholar 

  13. Ma H, Ohnita Y. Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces II. Tohoku Math J (2), 2015, 67: 195–246

    Article  MathSciNet  Google Scholar 

  14. Münzner H F. Isoparametrische Hyperffächen in Sphären. Math Ann, 1980, 251: 57–71

    Article  MathSciNet  Google Scholar 

  15. Münzner H F. Isoparametrische Hyperflächen in Sphären. II. Über die Zerlegung der Sphäre in Ballbündel. Math Ann, 1981, 256: 215–232

    Article  MathSciNet  Google Scholar 

  16. Nölker S. Isometric immersions of warped products. Differential Geom Appl, 1996, 6: 1–30

    Article  MathSciNet  Google Scholar 

  17. Oh Y-G. Second variation and stabilities of minimal Lagrangian submanifolds in Kaähler manifolds. Invent Math, 1990, 101: 501–519

    Article  MathSciNet  Google Scholar 

  18. Oh Y-G. Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math Z, 1993, 212: 175–192

    Article  MathSciNet  Google Scholar 

  19. Palmer B. Buckling eigenvalues, Gauss maps and Lagrangian submanifolds. Differential Geom Appl, 1994, 4: 391–403

    Article  MathSciNet  Google Scholar 

  20. Palmer B. Hamiltonian minimality and Hamiltonian stability of Gauss maps. Differential Geom Appl, 1997, 7: 51–58

    Article  MathSciNet  Google Scholar 

  21. Qian C, Tang Z. Recent progress in isoparametric functions and isoparametric hypersurfaces. In: Real and Complex Submanifolds. Springer Proceedings in Mathematics Statistics, vol. 106. Tokyo: Springer, 2014, 65–76

    Google Scholar 

  22. Reckziegel H. Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion. In: Global Differential Geometry and Global Analysis. Lecture Notes in Mathematics, vol. 1156. Berlin: Springer, 1985, 264–279

    Google Scholar 

  23. Reckziegel H. On the geometry of the complex quadric. In: Geometry and Topology of Submanifolds, vol. 8. River Edge: World Scientific, 1996, 302–315

    MATH  Google Scholar 

  24. Siffert A. A new structural approach to isoparametric hypersurfaces in spheres. Ann Global Anal Geom, 2017, 52: 425–456

    Article  MathSciNet  Google Scholar 

  25. Smyth B. Differential geometry of complex hypersurfaces. Ann of Math (2), 1967, 85: 246–266

    Article  MathSciNet  Google Scholar 

  26. Tang Z, Yan W. Isoparametric theory and its applications. ArXiv:1709.07235, 2017

  27. Torralbo F, Urbano F. Minimal surfaces in \(\mathbb{S}^{2}\times \mathbb{S}^{2}\). J Geom Anal, 2015, 25: 1132–1156

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tsinghua University-KU Leuven Bilateral Scientific Cooperation Fund and a collaboration project funded by National Natural Science Foundation of China and the Research Foundation Flanders (Grant No. 11961131001). The first author was supported by National Natural Science Foundation of China (Grant Nos. 11831005 and 11671224). The second author was supported by National Natural Science Foundation of China (Grant Nos. 11831005 and 11671223). The third author was supported by the Excellence of Science Project of the Belgian Government (Grant No. G0H4518N). The third author and the fourth author were supported by the KU Leuven Research Fund (Grant No. 3E160361). The fifth author was supported by National Natural Science Foundation of China (Grant No. 11571185) and the Fundamental Research Funds for the Central Universities, and she expresses her deep gratitude to the Mathematical Sciences Institute at the Australian National University for its hospitality and to Professor Ben Andrews for his encouragement and help during her stay in MSI of ANU as a visiting fellow, while part of this work was completed. The authors thank the referees for carefully reading this paper and providing some helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ma, H., Van der Veken, J. et al. Minimal Lagrangian submanifolds of the complex hyperquadric. Sci. China Math. 63, 1441–1462 (2020). https://doi.org/10.1007/s11425-019-9551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-9551-2

Keywords

MSC(2010)

Navigation