Skip to main content
Log in

On the reconstruction of media inhomogeneity by inverse wave scattering model

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Consider the reconstruction of the complex refraction index of an object, which is immersed in a known homogeneous background, from the knowledge of scattered waves of the point sources outside of the object. We firstly establish the uniqueness for this inverse problem, which provides the theoretical basis for the reconstruction scheme. Then based on the contrast source inversion (CSI) method, we propose an algorithm determining the refraction index and the artificial wave sources alternately by a dynamic iterative scheme. The algorithm defines the iterates by solving a series of minimization problems with uniformly convex penalty terms, which are allowed to be non-smooth to include L1 and total variation like functionals, ensuring the reconstruction quality when the unknown refraction index has the special features such as sparsity and discontinuity. By choosing the regularizing parameter automatically, the algorithm is terminated in terms of discrepancy principle. The convergence property of the iterative sequence is rigorously proven. Numerical implementations demonstrate the validity of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao G, Liu H Y. Nearly cloaking the electromagnetic fields. SIAM J Appl Math, 2014, 74: 724–742

    Article  MathSciNet  MATH  Google Scholar 

  2. Blasten E, Imanuvilov O Y, Yamamoto M. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Probl Imaging, 2015, 9: 709–723

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen Y. A fast, direct algorithm for the Lippmann-Schwinger integral equation in two dimensions. Adv Comput Math, 2002, 16: 175–190

    Article  MathSciNet  MATH  Google Scholar 

  4. Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. Berlin: Springer, 1992

    Book  MATH  Google Scholar 

  5. Greenleaf J F, Johnson S A, Bahn R C. Quantitative cross-sectional imaging of ultrasound parameters. In: Proceedings of IEEE Ultrasonics Symposium. New York: IEEE, 1977, 989–995

    Google Scholar 

  6. Hanke M, Groetsch C W. Nonstationary iterated Tikhonov regularization. J Optim Theory Appl, 1998, 97: 37–53

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu G H, Liu H Y. Recovering complex elastic scatterers by a single far-field pattern. J Differential Equations, 2014, 257: 469–489

    Article  MathSciNet  MATH  Google Scholar 

  8. Imanuvilov O Y, Yamamoto M. Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries. Milan J Math, 2013, 81: 187–258

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin Q. On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems. Numer Math, 2010, 115: 229–259

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin Q. A general convergence analysis of some Newton-type methods for nonlinear inverse problems. SIAM J Numer Anal, 2011, 49: 549–573

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin Q, Stals L. Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Inverse Problems, 2012, 28: 104011

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin Q, Zhong M. Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms. Numer Math, 2014, 127: 485–513

    Article  MathSciNet  MATH  Google Scholar 

  13. Kleinman R E, Van den Berg P M. A modified gradient method for two-dimensional problems in tomography. J Comput Appl Math, 1992, 42: 17–35

    Article  MathSciNet  MATH  Google Scholar 

  14. Kleinman R E, Van den Berg P M. An extended range modified gradient technique for profile inversion. Radio Sci, 1993, 28: 877–884

    Article  Google Scholar 

  15. Kleinman R E, Van den Berg P M. Two-dimensional location and shape reconstruction. Radio Sci, 1994, 29: 1157–1169

    Article  Google Scholar 

  16. Lin H, Azuma T, Qu X, et al. Robust contrast source inversion method with automatic choice rule for regularization parameters for ultrasound waveform tomography. Japan J Appl Phys, 2016, 55: 07KB08

    Article  Google Scholar 

  17. Liu H Y, Zhao H K, Zou C J. Determining scattering support of anisotropic acoustic mediums and obstacles. Commun Math Sci, 2015, 13: 987–1000

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu J J, Nakamura G, Sini M. Reconstruction of the shape and surface impedance from acoustic scattering data for arbitrary cylinder. SIAM J Appl Math, 2007, 67: 1124–1146

    Article  MathSciNet  MATH  Google Scholar 

  19. Nachman A I. Global uniqueness for a two-dimensional inverse boundary value problem. Ann of Math (2), 1996, 143: 71–96

    Article  MathSciNet  MATH  Google Scholar 

  20. Nesterov Y. A method of solving a convex programming problem with convergence rate O(1=k2). Dokl Akad Nauk, 1983, 27: 372–376

    MATH  Google Scholar 

  21. Rudin L, Osher S, Fatemi C. Nonlinear total variation based noise removal algorithm. Phys D, 1992, 60: 259–268

    Article  MathSciNet  MATH  Google Scholar 

  22. Tamano S, Azuma T, Imoto H, et al. Compensation of transducer element positions in a ring array ultrasonic computer tomography system. Japan J Appl Phys, 2015, 54: 07HF24

    Article  Google Scholar 

  23. Van den Berg P M, Abubakar A. Contrast source inversion method: State of art. J Electromagnetic Waves Appl, 2001, 15: 1503–1505

    Article  Google Scholar 

  24. Van den Berg P M, Kleinman R E. A total variation enhanced modified gradient algorithm for profile reconstruction. Inverse Problems, 1995, 11: L5–L10

    Article  MATH  Google Scholar 

  25. Van den Berg P M, Kleinman R E. A contrast source inversion method. Inverse Problems, 1997, 13: 1607–1620

    Article  MathSciNet  MATH  Google Scholar 

  26. Van den Berg P M, Van B, Abubakar A. Extended contrast source inversion. Inverse Problems, 1999, 15: 1325–1344

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang H B, Liu J J. The two-dimensional direct and inverse scattering problems with generalized oblique derivative boundary condition. SIAM J Appl Math, 2015, 75: 313–334

    Article  MathSciNet  MATH  Google Scholar 

  28. Zălinscu C. Convex Analysis in General Vector Spaces. River Edge: World Scientific, 2002

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 1421110002, 11531005 and 11501102) and National Science Foundation of Jiangsu Province (Grant No. BK20150594). The authors are grateful to Prof. Yamamoto M. and Dr. Lin H. X. for valuable and helpful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiJun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Liu, J. On the reconstruction of media inhomogeneity by inverse wave scattering model. Sci. China Math. 60, 1825–1836 (2017). https://doi.org/10.1007/s11425-016-9054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9054-6

Keywords

MSC(2010)

Navigation