Skip to main content
Log in

Spreading and vanishing in a West Nile virus model with expanding fronts

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study a simplified version of a West Nile virus (WNv) model discussed by Lewis et al. (2006), which was considered as a first approximation for the spatial spread of WNv. The basic reproduction number R 0 for the non-spatial epidemic model is defined and a threshold parameter R 0 D for the corresponding problem with null Dirichlet boundary condition is introduced. We consider a free boundary problem with a coupled system, which describes the diffusion of birds by a PDE and the movement of mosquitoes by an ODE. The risk index R 0 F(t) associated with the disease in spatial setting is represented. Sufficient conditions for the WNv to eradicate or to spread are given. The asymptotic behavior of the solution to the system when the spreading occurs is considered. It is shown that the initial number of infected populations, the diffusion rate of birds and the length of initial habitat exhibit important impacts on the vanishing or spreading of the virus. Numerical simulations are presented to illustrate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ahn I, Baek S, Lin Z G. The spreading fronts of an infective environment in a man-environment-man epidemic model. Appl Math Model, 2016, 40: 7082–7101

    Article  MathSciNet  Google Scholar 

  2. Allan B F, Langerhans R B, Ryberg W A, et al. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia, 2009, 158: 699–708

    Article  Google Scholar 

  3. Allman E S, Rhodes J A. Mathematical Models in Biology: An Introduction. Cambridge: Cambridge University Press, 2004

    MATH  Google Scholar 

  4. Anderson R M, May R M. Population biology of infectious diseases: Part I. Nature, 1979, 280: 361–367

    Article  Google Scholar 

  5. Asnis D S, Conetta R, Teixeira A A, et al. The West Nile virus outbreak of 1999 in New York: The flushing hospital experience. Clin Infect Dis, 2000, 30: 413–418

    Article  Google Scholar 

  6. Beretta E, Hara T, Ma W B, et al. Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal, 2001, 47: 4107–4115

    Article  MathSciNet  MATH  Google Scholar 

  7. Blower S M, Mclean A R. Mixing ecology and epidemiology. Proc R Soc Lond B, 1991, 245: 187–192

    Article  Google Scholar 

  8. Bowman C, Gumel A B, van den Drissche P, et al. A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol, 2005, 67: 1107–1133

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen X F, Friedman A. A free boundary problem arising in a model of wound healing. SIAM J Math Anal, 2000, 32: 778–800

    Article  MathSciNet  MATH  Google Scholar 

  10. Du Y H, Guo Z M. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II. J Differential Equations, 2011, 250: 4336–4366

    Article  MathSciNet  MATH  Google Scholar 

  11. Du Y H, Lin Z G. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J Math Anal, 2010, 42: 377–405

    Article  MathSciNet  MATH  Google Scholar 

  12. Du Y H, Lin Z G. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete Contin Dyn Syst Ser B, 2014, 19: 3105–3132

    Article  MathSciNet  MATH  Google Scholar 

  13. Du Y H, Lou B D. Spreading and vanishing in nonlinear diffusion problems with free boundaries. J Eur Math Soc, 2015, 17: 2673–2724

    Article  MathSciNet  MATH  Google Scholar 

  14. Ge J, Kim K I, Lin Z G, et al. A SIS reaction-diffusion-advection model in a low-risk and high-risk domain. J Differential Equations, 2015, 259: 5486–5509

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo J S, Wu C H. On a free boundary problem for a two-species weak competition system. J Dynam Differential Equations, 2012, 24: 873–895

    Article  MathSciNet  MATH  Google Scholar 

  16. Hui E K W. Reasons for the increase in emerging and re-emerging viral infectious diseases. Microbes Infect, 2006, 8: 905–916

    Article  Google Scholar 

  17. Jamieson D J, Ellis J E, Jernigan D B, et al. Emerging infectious disease outbreaks: Old lessons and new challenges for obstetrician-gynecologists. Am J Obstet Gynecol, 2006, 194: 1546–1555

    Article  Google Scholar 

  18. Keeling M J, Woolhouse M E J, Shaw D J, et al. Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science, 2001, 294: 813–817

    Article  Google Scholar 

  19. Kramer L D, Styer L M, Ebel G D. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol, 2008, 53: 61–81

    Article  Google Scholar 

  20. Ladyzenskaja O A, Solonnikov V A, Ural’ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence: Amer Math Soc, 1968

    Google Scholar 

  21. Lei C X, Kim K I, Lin Z G. The spreading frontiers of avian-human influenza described by the free boundary. Sci China Math, 2014, 57: 971–990

    Article  MathSciNet  MATH  Google Scholar 

  22. Lei C X, Lin Z G, Wang H Y. The free boundary problem describing information diffusion in online social networks. J Differential Equations, 2013, 254: 1326–1341

    Article  MathSciNet  MATH  Google Scholar 

  23. Lei C X, Lin Z G, Zhang Q Y. The spreading front of invasive species in favorable habitat or unfavorable habitat. J Differential Equations, 2014, 257: 145–166

    Article  MathSciNet  MATH  Google Scholar 

  24. Lewis M, Renclawowicz J, Driessche P. Travelling waves and spread rates for a West Nile virus model. Bull Math Biol, 2006, 68: 3–23

    Article  MathSciNet  MATH  Google Scholar 

  25. Lieberman G M. Second Order Parabolic Differential Equations. River Edge: World Scientific, 1996

    Book  MATH  Google Scholar 

  26. Lin Z G. A free boundary problem for a predator-prey model. Nonlinearity, 2007, 20: 1883–1892

    Article  MathSciNet  MATH  Google Scholar 

  27. Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in New York city area in 1999. New Engl J Med, 2001, 344: 1807–1814

    Article  Google Scholar 

  28. Rubinstein L I. The Stefan Problem. Providence: Amer Math Soc, 1971

    Google Scholar 

  29. Smith H L. Monotone Dynamical Systems. Providence: Amer Math Soc, 1995

    Google Scholar 

  30. Tao Y S. A free boundary problem modeling the cell cycle and cell movement in multicellular tumor spheroids. J Differential Equations, 2009, 247: 49–68

    Article  MathSciNet  MATH  Google Scholar 

  31. Tompkins D M, Carver S, Jones M E, et al. Emerging infectious diseases of wildlife: A critical perspective. Trends Parasitol, 2015, 31: 149–159

    Article  Google Scholar 

  32. Wang B G, Li W T, Wang Z C. A reaction-diffusion SIS epidemic model in an almost periodic enviroment. Z Angew Math Phys, 2015, 66: 3085–3108

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang J. The selection for dispersal: A diffusive competition with a free boundary. Z Angew Math Phys, 2015, 66: 2143–2160

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang J, Cao J F. The spreading frontiers in partially degenerate reaction-diffusion systems. Nonlinear Anal, 2015, 122: 215–238

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang K B. Area-preserving mean curvature flow of rotationally symmetric hypersurfaces with free boundaries. Sci China Math, 2016, 59: 493–502

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang M X. On some free boundary problems of the prey-predator model. J Differential Equations, 2014, 256: 3365–3394

    Article  MathSciNet  MATH  Google Scholar 

  37. Wonham M J, Beck T C, Lewis M A. An epidemiology model for West Nile virus: Invansion analysis and control applications. Proc R Soc Lond B, 2004, 271: 501–507

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11371311) and Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions (Grant No. PPZY2015B109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGui Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarboush, A.K., Lin, Z. & Zhang, M. Spreading and vanishing in a West Nile virus model with expanding fronts. Sci. China Math. 60, 841–860 (2017). https://doi.org/10.1007/s11425-016-0367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0367-4

Keywords

MSC(2010)

Navigation