Skip to main content
Log in

A spectral projection method for transmission eigenvalues

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on the spectral projection. The method probes a given region on the complex plane using contour integrals and decides whether the region contains eigenvalue(s) or not. It is particularly suitable to test whether zero is an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An J, Shen J. A Fourier-spectral-element method for transmission eigenvalue problems. J Sci Comput, 2013, 57: 670–688

    Article  MathSciNet  MATH  Google Scholar 

  2. Austin A P, Kravanja P, Trefethen L N. Numerical algorithms based on analytic function values at roots of unity. SIAM J Numer Anal, 2014, 52: 1795–1821

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyn W J. An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl, 2012, 436: 3839–3863

    Article  MathSciNet  MATH  Google Scholar 

  4. Cakoni F, Colton D, Monk P, et al. The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems, 2010, 26: 074004

    Article  MathSciNet  MATH  Google Scholar 

  5. Cakoni F, Monk P, Sun J. Error analysis of the finite element approximation of transmission eigenvalues. Comput Methods Appl Math, 2014, 14: 419–427

    Article  MathSciNet  MATH  Google Scholar 

  6. Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed. New York: Springer-Verlag, 2013

    Book  MATH  Google Scholar 

  7. Colton D, Monk P, Sun J. Analytical and computational methods for transmission eigenvalues. Inverse Problems, 2010, 26: 045011

    Article  MathSciNet  MATH  Google Scholar 

  8. Cossonnière A. Valeurs propres de transmission et leur utilisation dans l’identification d’inclusions à partir de mesures électromagnétiques. PhD Thesis. Toulouse: Université de Toulouse, 2011

    Google Scholar 

  9. Cossonnière A, Haddar H. Surface integral formulation of the interior transmission problem. J Integral Equations Appl, 2013, 25: 341–376

    Article  MathSciNet  MATH  Google Scholar 

  10. Gintides D, Pallikarakis N. A computational method for the inverse transmission eigenvalue problem. Inverse Problems, 2013, 29: 104010

    Article  MathSciNet  MATH  Google Scholar 

  11. Goedecker S. Linear scaling electronic structure methods. Rev Modern Phys, 1999, 71: 1085–1123

    Article  Google Scholar 

  12. Hsiao G, Liu F, Sun J, et al. A coupled BEM and FEM for the interior transmission problem in acoustics. J Comp Appl Math, 2011, 235: 5213–5221

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsiao G C, Xu L. A system of boundary integral equations for the transmission problem in acoustics. Appl Num Math, 2011, 61: 1017–1029

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang R, Struthers A, Sun J, et al. Recursive integral method for transmission eigenvalues. ArXiv:1503.04741, 2015

    Google Scholar 

  15. Huang T, Huang W, Lin W. A robust numerical algorithm for computing maxwell’s transmission eigenvalue problems. SIAM J Sci Comput, 2015, 37: A2403–A2423

    Article  MathSciNet  MATH  Google Scholar 

  16. Ji X, Sun J. A multi-level method for transmission eigenvalues of anisotropic media. J Comput Phys, 2013, 255: 422–435

    Article  MathSciNet  Google Scholar 

  17. Ji X, Sun J, Turner T. A mixed finite element method for Helmholtz Transmission eigenvalues. ACM Trans Math Software, 2012, 38: Algorithm 922

    Article  MathSciNet  Google Scholar 

  18. Ji X, Sun J, Xie H. A multigrid method for Helmholtz transmission eigenvalue problems. J Sci Comput, 2014, 60: 276–294

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato T. Perturbation Theory of Linear Operators. New York: Springer-Verlag, 1966

    Book  MATH  Google Scholar 

  20. Kleefeld A. A numerical method to compute interior transmission eigenvalues. Inverse Problems, 2013, 29: 104012

    Article  MathSciNet  MATH  Google Scholar 

  21. Krämer L, Di Napoli E, Galgon M, et al. Dissecting the FEAST algorithm for generalized eigenproblems. J Comput Appl Math, 2013, 244: 1–9

    Article  MathSciNet  MATH  Google Scholar 

  22. Li T, Huang W, Lin W W, et al. On spectral analysis and a novel algorithm for transmission eigenvalue problems. J Sci Comput, 2015, 64: 83–108

    Article  MathSciNet  MATH  Google Scholar 

  23. Olver F, Lozier D, Boisvert R, et al. NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press, 2010

    MATH  Google Scholar 

  24. Osborn J. Spectral approximation for compact operators. Math Comp, 1975, 29: 712–725

    Article  MathSciNet  MATH  Google Scholar 

  25. Polizzi E. Density-matrix-based algorithms for solving eigenvalue problems. Phys Rev B, 2009, 79: 115112

    Article  Google Scholar 

  26. Sakurai T, Sugiura H. A projection method for generalized eigenvalue problems using numerical integration. J Comput Appl Math, 2003, 159: 119–128

    Article  MathSciNet  MATH  Google Scholar 

  27. Sauter S, Schwab C. Boundary Element Methods. Berlin: Springer, 2011

    Book  MATH  Google Scholar 

  28. Sun J. Iterative methods for transmission eigenvalues. SIAM J Numer Anal, 2011, 49: 1860–1874

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun J, Xu L. Computation of the Maxwell’s transmission eigenvalues and its application in inverse medium problems. Inverse Problems, 2013, 29: 104013

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang P, Polizzi E. FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J Matrix Anal Appl, 2014, 35: 354–390

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang Y, Han J, Bi H. Non-conforming finite element methods for transmission eigenvalue problem. ArXiv:1601.01068, 2016

    Google Scholar 

  32. Yin G. A contour-integral based method for counting the eigenvalues inside a region in the complex plane. ArXiv:1503.05035, 2015

    Google Scholar 

  33. Yin G, Chan R, Yeung M. A FEAST algorithm with oblique projection for generalized eigenvalue problems. ArXiv:1404.1768, 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiGuang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Sun, J. & Xu, L. A spectral projection method for transmission eigenvalues. Sci. China Math. 59, 1613–1622 (2016). https://doi.org/10.1007/s11425-016-0289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0289-8

Keywords

MSC(2010)

Navigation