Skip to main content
Log in

Transmission eigenvalue problem for inhomogeneous absorbing media with mixed boundary condition

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Consider the transmission eigenvalue problem for the wave scattering by a dielectric inhomogeneous absorbing obstacle lying on a perfect conducting surface. After excluding the purely imaginary transmission eigenvalues, we prove that the transmission eigenvalues exist and form a discrete set for inhomogeneous non-absorbing media, by using analytic Fredholm theory. Moreover, we derive the Faber-Krahn type inequalities revealing the lower bounds on real transmission eigenvalues in terms of the media parameters. Then, for inhomogeneous media with small absorption, we prove that the transmission eigenvalues also exist and form a discrete set by using perturbation theory. Finally, for homogeneous media, we present possible components of the eigenvalue-free zone quantitatively, giving the geometric understanding on this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendali A, Boubendir Y, Zerbib N. Localized adaptive radiation condition for couping boundry with finite element methods applied to wave propagation probelms. IMA J Numer Anal, 2013, doi:10.1093/imanum/drt038

    Google Scholar 

  2. Cakoni F, Colton D. Qualitative Method in Inverse Scattering Theory. Berlin: Springer, 2006

    MATH  Google Scholar 

  3. Cakoni F, Colton D, Hadder H. On the determination of Dirichlet and transmission eigenvalues from far field data. J Int Eqns Appl, 2009, 21: 203–227

    Article  Google Scholar 

  4. Cakoni F, Colton D, Haddar H. The interior transmission problem for regions with cavities. SIAM J Math Anal, 2010, 42: 145–162

    Article  MathSciNet  MATH  Google Scholar 

  5. Cakoni F, Colton D, Haddar H. The interior transmission eigenvalue prolem for absoring media. Inverse Probelms, 2012, 28: 045005

    Article  MathSciNet  MATH  Google Scholar 

  6. Cakoni F, Gintides D, Haddar H. The existence of an infinite discrete set of transmission eigenvalues. SIAM J Math Anal, 2010, 42: 237–255

    Article  MathSciNet  MATH  Google Scholar 

  7. Cakoni F, Hadder H. On the existence of transmission eigenvalues in an inhomogeneous medium. Appl Anal, 2009, 88: 475–493

    Article  MathSciNet  MATH  Google Scholar 

  8. Cakoni F, Haddar H. Transmission eigenvalues in inverse scatering theory. Inside Out II, 2012, 60: 527–578

    Google Scholar 

  9. Colton D, Monk P. The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium. Quart J Mech Appl Math, 1987, 40: 189–212

    Article  MathSciNet  MATH  Google Scholar 

  10. Colton D, Monk P. The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium. Quart J Mech Appl Math, 1988, 41: 97–125

    Article  MathSciNet  MATH  Google Scholar 

  11. Colton D, Päivärinta L, Sylvester J. The interior transmission problem. Inverse Probl Imaging, 2007, 1: 13–28

    Article  MathSciNet  MATH  Google Scholar 

  12. Colton D, Kress K. Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. New York: Springer, 1992

    Book  MATH  Google Scholar 

  13. Kato T. Perturbation Theory for Linear Operators. Berlin: Springer, 1980

    MATH  Google Scholar 

  14. Kirsch A. On the existence of the far field patterns for the transmission problem. IMA J Appl Math, 1986, 37: 213–225

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirsch A. On the existence of transmission eigenalues. Inverse Probl Imaging, 2009, 3: 155–172

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirsch A, Grinberg N. The Factorization Method for Inverse Problems. Oxford: Oxford University Press, 2008

    MATH  Google Scholar 

  17. Li T X, Huang W Q, Lin W W, et al. On spectral analysis and a novel algorithm for transmission eigenvalue problems. J Sci Comput, 2015, 64: 83–108

    Article  MathSciNet  MATH  Google Scholar 

  18. Päivärinta L, Sylvester J. Transmission eigenvalues. SIAM J Math Anal, 2008, 40: 738–753

    Article  MathSciNet  MATH  Google Scholar 

  19. Rynne B P, Sleeman B D. The interior transmission problem and inverse scattering from inhomogeneous medium. SIAM J Math Anal, 1991, 22: 1755–1762

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun J G. Iterative methods for transmission eigenvalues. SIAM J Num Anal, 2011, 49: 1860–1874

    Article  MathSciNet  MATH  Google Scholar 

  21. Sylvester J. Discreteness of transmission eigenvalues via upper triangular compact operators. SIAM J Math Anal, 2012, 44: 341–354

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang F, Monk P. The interior transmission problem for regions on a conducting surface. Inverse Problems, 2014, 30: 015007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiJun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Liu, J. Transmission eigenvalue problem for inhomogeneous absorbing media with mixed boundary condition. Sci. China Math. 59, 1081–1094 (2016). https://doi.org/10.1007/s11425-015-5117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5117-y

Keywords

MSC(2010)

Navigation