Skip to main content
Log in

Differential operators for Siegel-Jacobi forms

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For any positive integers n and m, H n,m := H n ×C(m,n) is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the Siegel-Jacobi space and use it to obtain derivations of Jacobi forms. Using these results, we construct a series of invariant differential operators for Siegel-Jacobi forms. Also two kinds of Maass-Shimura type differential operators for H n,m are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berceanu S. A convenient coordinatization of Siegel-Jacobi domains. Rev Math Phys, 2012, 24: 10

    MathSciNet  MATH  Google Scholar 

  2. Berndt R, Schmidt R. Elements of the Representation Theory of the Jacobi Group. Basel: Birkhauser, 1998

    Book  MATH  Google Scholar 

  3. Böcherer S. Bilinear holomorphic differential operators for the Jacobi group. Comm Math Univ St Pauli, 1998, 47: 135–154

    MathSciNet  MATH  Google Scholar 

  4. Böcherer S, Das S. On holomorphic differential operators equivariant for the inclusion of Sp(n, R) in U(n, n). Int Math Res Not, 2012, doi:10.1093/imrn/rns116

    Google Scholar 

  5. Böcherer S, Nagaoka S. On mod p properties of Siegel modular forms. Math Ann, 2007, 338: 421–433

    Article  MathSciNet  MATH  Google Scholar 

  6. Chern S S, Chen W H, Lam K S. Lectures on Differential Geometry. Singapore: World Scientific, 2000

    MATH  Google Scholar 

  7. Choie Y, Eholzer W. Rankin-Cohen operators for Jacobi and Siegel forms. J Number Theory, 1998, 68: 160–177

    Article  MathSciNet  MATH  Google Scholar 

  8. Conley C, Raum M. Harmonic Maass-Jacobi forms of degree 1 with higher rank indices. Int J Number Theory, 2015, doi: 10.1142/S1793042116501165

    Google Scholar 

  9. Eholzer W, Ibukiyama T. Rankin-Cohen type differential operators for Siegel modular forms. Int J Math, 1988, 9: 443–463

    Article  MathSciNet  MATH  Google Scholar 

  10. Eichler M, Zagier D. The Theory of Jacobi Forms. Boston: Birkhauser, 1985

    Book  MATH  Google Scholar 

  11. Ibukiyama T. On differential operators on automorphic forms and invariant pluriharmonic polynomials. Comment Math Univ St Pauli, 1999, 48: 103–118

    MathSciNet  MATH  Google Scholar 

  12. Kobayashi S, Nomizu K. Foundations of Differential Geometry, vol. 2. New York: Wiley, 1969

    MATH  Google Scholar 

  13. Maass H. Siegel’s Modular Forms and Dirichlet Series. Berlin-New York: Springer-Verlag, 1971

    MATH  Google Scholar 

  14. Shimura G. Arithmeticity in the Theory of Automorphic Forms. Providence, RI: Amer Math Soc, 2000

    MATH  Google Scholar 

  15. Yang E, Yin L. Derivatives of Siegel modular forms and modular connections. Manuscripta Math, 2015, 146: 65–84

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang J-H. Invariant metrics and Laplacians on Siegel-Jacobi space. J Number Thoery, 2007, 127: 83–102

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang J-H. Invariant differential operators on the Siegel-Jacobi space. ArXiv:1107.0509v1, 2011

    Google Scholar 

  18. Ziegler C. Jacobi forms of higher degree. Abh Math Sem Hamburg, 1989, 59: 191–224

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yin, L. Differential operators for Siegel-Jacobi forms. Sci. China Math. 59, 1029–1050 (2016). https://doi.org/10.1007/s11425-015-5111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5111-4

Keywords

MSC(2010)

Navigation