Skip to main content
Log in

Drift perturbation of subordinate Brownian motions with Gaussian component

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let d ≥ 1 and Z be a subordinate Brownian motion on Rd with infinitesimal generator Δ + ψ(Δ), where ψ is the Laplace exponent of a one-dimensional non-decreasing Lévy process (called subordinator). We establish the existence and uniqueness of fundamental solution (also called heat kernel) p b(t, x, y) for non-local operator ℒb = Δ + ψ(Δ) + b · ∇, where b is an Rd-valued function in Kato class K d,1. We show that p b(t, x, y) is jointly continuous and derive its sharp two-sided estimates. The kernel p b(t, x, y) determines a conservative Feller process X. We further show that the law of X is the unique solution of the martingale problem for (Lb,C c (Rd)) and X is a weak solution of \(X_t = X_0 + Z_t + \int_0^t {b(X_s )ds,} t \geqslant 0\). Moreover, we prove that the above stochastic differential equation has a unique weak solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  2. Bass R F, Chen Z-Q. Brownian motion with singular drift. Ann Probab, 2003, 31: 791–817

    Article  MATH  MathSciNet  Google Scholar 

  3. Bogdan K, Grzywny T, Ryznar M. Density and tails of unimodal convolution semigroups. J Funct Anal, 2014, 266: 3543–3571

    Article  MATH  MathSciNet  Google Scholar 

  4. Bogdan K, Jakubowski T. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm Math Phys, 2007, 271: 179–198

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen Z-Q. Symmetric jump processes and their heat kernel estimates. Sci China Ser A, 2009, 52: 1423–1445

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen Z-Q, Hu E. Heat kernel estimates for Δ + Δα/2 under gradient perturbation. Stochastic Process Appl, 2015, 125: 2603–2642

    Article  MathSciNet  Google Scholar 

  7. Chen Z-Q, Kim P, Song R. Dirichlet heat kernel estimates for fractional Laplacian under gradient perturbation. Ann Probab, 2012, 40: 2483–2538

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen Z-Q, Kumagai T. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process Appl, 2003, 108: 27–62

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen Z-Q, Kumagai T. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab Theory Related Fields, 2008, 140: 277–317

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen Z-Q, Kumagai T. A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev Mat Iberoam, 2010, 26: 551–589

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen Z-Q, Wang L. Uniqueness of stable processes with drift. ArXiv:1309.6414, 2013

    Google Scholar 

  12. Chen Z-Q, Wang J. Perturbation by non-local operators. ArXiv:1312.7594, 2013

    Google Scholar 

  13. Cranston M, Zhao Z. Conditional transformation of drift formula and potential theory for 1/2Δ+b(·)· ∇. Comm Math Phys, 1987, 112: 613–625

    Article  MATH  MathSciNet  Google Scholar 

  14. Davies E B. Explicit constants for Gaussian upper bounds on heat kernels. Amer J Math, 1987, 109: 319–333

    Article  MATH  MathSciNet  Google Scholar 

  15. Janicki A, Weron A. Simulation and Chaotic Behavior of K-Stable Processes. Boca Raton: CRC Press, 1994

    Google Scholar 

  16. Kim P, Song R. Stable process with singular drift. Stochastic Process Appl, 2014, 124: 2479–2516

    Article  MATH  MathSciNet  Google Scholar 

  17. Klafter J, Shlesinger M F, Zumofen G. Beyond Brownian motion. Phys Today, 1996, 49: 33–39

    Article  Google Scholar 

  18. Øksendal B, Sulem A. Applied Stochastic Control of Jump Diffusions, 2nd ed. Berlin: Springer, 2007

    Book  Google Scholar 

  19. Zhang Q-S. Gaussian bounds for the fundamental solutions of ∇(Au) + Buu t = 0. Manuscripta Math, 1997, 93: 381–390

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoMan Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZQ., Dou, X. Drift perturbation of subordinate Brownian motions with Gaussian component. Sci. China Math. 59, 239–260 (2016). https://doi.org/10.1007/s11425-015-5088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5088-z

Keywords

MSC(2010)

Navigation