Skip to main content
Log in

On stabilization of Itô stochastic time-varying systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The stabilization with receding horizon control (RHC) of Itô stochastic time-varying systems is studied in this paper. Based on monotonically non-increasing of optimal cost and stochastic Lyapunov stability theory, a necessary and sufficient stabilization condition on the terminal weighting matrix is proposed, which guarantees the mean-square stability of the closed-loop system. The explicit receding horizon controller is obtained by employing stochastic maximum principle. Simulations demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson B D O and Moore J B, New results in linear system stability, SIAM Journal on Control, 1969, 7(3): 398–414.

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson B D O and Moore J B, Optimal Control: Linear Quadratic Methods, Englewood Cliffs, NJ: Prentice-Hall, 1990.

    MATH  Google Scholar 

  3. Petersen I R, A Riccati equation approach to the design of stabilizing controllers and observers for a class of uncertain linear systems, IEEE Transactions on Automatic Control, 1985, 30(9): 904–907.

    Article  MathSciNet  MATH  Google Scholar 

  4. SchmitendorfW E, Designing stabilizing controllers for uncertain systems using the Riccati equation approach, IEEE Transactions on Automatic Control, 1988, 33(4): 376–379.

    Article  MathSciNet  Google Scholar 

  5. Ilchmann A, Owens D H, andWolters D P, Sufficient conditions for stability of linear time-varying systems, Systems & Control Letters, 1987, 9(2): 157–163.

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou B, Cai R B, and Duan G R, Stabilisation of time-varying linear systems via Lyapunov differential equations, International Journal of Control, 2011, 86(2): 332–347.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou B and Duan G R, Periodic lyapunov equation based approaches to the stabilization of continous-time periodic linear systems, IEEE Transactions on Automatic Control, 2012, 57(8): 2139–2146.

    Article  MathSciNet  Google Scholar 

  8. Kwon W H and Pearson A E, A modified quadratic cost problem and feedback stabilization of a linear system, IEEE Transactions on Automatic Control, 1977, 22(5): 838–842.

    Article  MathSciNet  MATH  Google Scholar 

  9. Mullhaupt P, Buccieri D, and Bonvin D A, Numerical sufficiently test for the asymptotic stability of linear time-varying systems, Automatica, 2007, 43(4): 631–638.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hakvoorta W B J, Aartsb R G K M, Dijkb J V, et al., A computationally efficient algorithm of iterative learning control for discrete-time linear time-varying systems, Automatica, 2009, 45(12): 2925–2929.

    Article  MathSciNet  Google Scholar 

  11. Chen M S and Huang Y R, Linear time-varying system control based on the inversion transformation, Automatica, 1997, 33(4): 683–688.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee J W, Kwon W H, and Choi J H, On stability of constrained receding horizon control with finite terminal weighting matrix, Automatica, 1998, 34(12): 1607–1612.

    Article  MATH  Google Scholar 

  13. Kim K B, Implementation of stabilizing receding horizon controls for linear time-varying systems, Automatica, 2002, 38(10): 1705–1711.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bernardini D and Bemporad A, Stabilizing model predictive control of stochastic constrained linear systems, IEEE Transactions on Automatic Control, 2012, 57(6): 1468–1480.

    Article  MathSciNet  Google Scholar 

  15. Mayne D Q, Model predictive control: Recent developments and future promise, Automatica, 2014, 50(12): 2967–2986.

    Article  MathSciNet  MATH  Google Scholar 

  16. Wei F J and Visintini A L, On the stability of receding horizon control for continous-time stochastic systems, Systems & Control Letters, 2014, 63: 43–49.

    Article  MathSciNet  MATH  Google Scholar 

  17. Chatterjee D and Lygeros J, On stability and performance of stochastic predictive control techniques, IEEE Transactions on Automatic Control, 2015, 60(2): 509–514.

    Article  MathSciNet  MATH  Google Scholar 

  18. Aberkane S and Dragan V, Robust stability and robust stabilization of a class of discrete-time time-varying linear stochastic systems, SAIM Journal on Control and Optimization, 2015, 53(1): 30–57.

    Article  MathSciNet  MATH  Google Scholar 

  19. Phillis Y A, Optimal stabilization of stochastic systems, Journal of Mathematics Analysis and Applications, 1983, 94(2): 489–500.

    Article  MathSciNet  MATH  Google Scholar 

  20. Phillis Y A, Controller design of systems with multiplicative noise, IEEE Transactions on Automatic Control, 1985, 30(10): 1017–1019.

    Article  MathSciNet  MATH  Google Scholar 

  21. ZhangW H, ZhengWX, and Chen B S, Detectability, observability and Lyapunov-type theorems of linear discrete time-varying stochastic systems with multiplicative noise, International Journal of Control, 2016, DOI: 10.1080/00207179.2016.1257152.

    Google Scholar 

  22. Yong J and Zhou X, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer Verlag, New York, 1999.

    Book  MATH  Google Scholar 

  23. Niwa S, Hayase M, and Sugiura I, Stability of linear time-varying systems with state dependent noise, IEEE Transactions on Automatic Control, 1976, 21(5): 775–776.

    Article  MathSciNet  MATH  Google Scholar 

  24. Phillis Y A, On the stabilization of discrete time linear time varying stochastic systems, IEEE Transanctions on Systems, Man, and Cybernetics, 1982, 12(3): 415–417.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Gao.

Additional information

This work was supported by the Taishan Scholar Construction Engineering by Shandong Government and the National Natural Science Foundation of China under Grant Nos. 61120106011 and 61573221.

This paper was recommended for publication by Editor XIE Lihua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Zhang, H. On stabilization of Itô stochastic time-varying systems. J Syst Sci Complex 30, 818–827 (2017). https://doi.org/10.1007/s11424-017-6071-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6071-0

Keywords

Navigation