Skip to main content

Advertisement

Log in

Interbody Fusions in the Lumbar Spine: A Review

  • CURRENT CONCEPTS IN SPINAL FUSION/Review Article
  • Published:
HSS Journal ®

Abstract

Background

Lumbar interbody fusion is among the most common types of spinal surgery performed. Over time, the term has evolved to encompass a number of different approaches to the intervertebral space, as well as differing implant materials. Questions remain over which approaches and materials are best for achieving fusion and restoring disc height.

Questions/Purposes

We reviewed the literature on the advantages and disadvantages of various methods and devices used to achieve and augment fusion between the disc spaces in the lumbar spine.

Methods

Using search terms specific to lumbar interbody fusion, we searched PubMed and Google Scholar and identified 4993 articles. We excluded those that did not report clinical outcomes, involved cervical interbody devices, were animal studies, or were not in English. After exclusions, 68 articles were included for review.

Results

Posterior approaches have advantages, such as providing 360° support through a single incision, but can result in retraction injury and do not always restore lordosis or correct deformity. Anterior approaches allow for the largest implants and good correction of deformities but can result in vascular, urinary, psoas muscle, or lumbar plexus injury and may require a second posterior procedure to supplement fixation. Titanium cages produce improved osteointegration and fusion rates but also increase subsidence caused by the stiffness of titanium relative to bone. Polyetheretherketone (PEEK) has an elasticity closer to that of bone and shows less subsidence than titanium cages, but as an inert compound PEEK results in lower fusion rates and greater osteolysis. Combination PEEK–titanium coating has not yet achieved better results. Expandable cages were developed to increase disc height and restore lumbar lordosis, but the data on their effectiveness have been inconclusive. Three-dimensionally (3D)-printed cages have shown promise in biomechanical and animal studies at increasing fusion rates and reducing subsidence, but additive manufacturing options are still in their infancy and require more investigation.

Conclusions

All of the approaches to spinal fusion have plusses and minuses that must be considered when determining which to use, and newer-technology implants, such as PEEK with titanium coating, expandable, and 3D-printed cages, have tried to improve upon the limitations of existing grafts but require further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alimi M, Shin B, Macielak M, et al. Expandable polyaryl-ether-ether-ketone spacers for interbody distraction in the lumbar spine. Global Spine J. 2015;5:169–178.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alvi MA, Alkhataybeh R, Wahood W, et al. The impact of adding posterior instrumentation to transpsoas lateral fusion: a systematic review and meta-analysis. J Neurosurg Spine. 2018;30:211–221.

    Article  PubMed  Google Scholar 

  3. Arnold PM, Anderson KK, McGuire RA Jr. The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int. 2012;3(Suppl 3):S198–S215.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Audat Z, Moutasem O, Yousef K, Mohammad B. Comparison of clinical and radiological results of posterolateral fusion, posterior lumbar interbody fusion and transforaminal lumbar interbody fusion techniques in the treatment of degenerative lumbar spine. Singap Med J. 2012;53:183–187.

    CAS  Google Scholar 

  5. Barbagallo GM, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M. Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome. Evid Based Spine Care J. 2014;5(1):28–37.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Behrbalk E, Uri O, Parks RM, Musson R, Soh RC, Boszczyk BM. Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2. Eur Spine J. 2013;22:2869–2875.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bocahut N, Audureau E, Poignard A. Incidence and impact of implant subsidence after stand-alone lateral lumbar interbody fusion. Orthop Traumatol Surg Res. 2018;104(3):405–410.

    Article  CAS  PubMed  Google Scholar 

  8. Briggs H, Milligan PR. Chip fusion of the low back following exploration of the spinal canal. J Bone Joint Surg Am. 1944;26(1):125–130.

    Google Scholar 

  9. Chen Y, Wang X, Lu X, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22:1539–1546.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chong E, Pelletier MH, Mobbs RJ, Walsh WR. The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review. BMC Musculoskelet Disord. 2015;16:99.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chou YC, Chen DC, Hsieh WA, et al. Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci. 2008;15:1240–1245.

    Article  CAS  PubMed  Google Scholar 

  12. Cuzzocrea F, Ivone A, Jannelli E, Fioruzzi A, Ferranti E, Vanelli R, Benazzo F. PEEK versus metal cages in posterior lumbar interbody fusion: a clinical and radiological comparative study. Musculoskelet Surg. 2019 Dec;103(3):237-241. https://doi.org/10.1007/s12306-018-0580-6. Epub 2018 Dec 10.

    Article  PubMed  Google Scholar 

  13. De Bartolo L, Morelli S, Bader A, Drioli E. The influence of polymeric membrane surface free energy on cell metabolic functions. J Mater Sci Mater Med. 2001;12(10–12):959–963.

    Article  PubMed  Google Scholar 

  14. Dorward IG, Lenke LG, Bridwell KH, et al. Transforaminal versus anterior lumbar interbody fusion in long deformity constructs: a matched cohort analysis. Spine (Phila Pa 1976). 2013;38:E755–E762.

    Article  Google Scholar 

  15. Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007;15:321–329.

    Article  PubMed  Google Scholar 

  16. Fan SW, Hu ZJ, Fang XQ, Zhao FD, Huang Y, Yu HJ. Comparison of paraspinal muscle injury in one-level lumbar posterior inter-body fusion: modified minimally invasive and traditional open approaches. Orthop Surg. 2010;2:194–200.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Faundez AA, Mehbod AA, Wu C, Wu W, Ploumis A, Transfeldt EE. Position of interbody spacer in transforaminal lumbar interbody fusion: effect on 3-dimensional stability and sagittal lumbar contour. J Spinal Disord Tech. 2008;21(3):175–180.

    Article  PubMed  Google Scholar 

  18. Fujimori T, Le H, Schairer WW, Berven SH, Qamirani E, Hu SS. Does transforaminal lumbar interbody fusion have advantages over posterolateral lumbar fusion for degenerative spondylolisthesis? Global Spine J. 2015;5:102–109.

    Article  PubMed  Google Scholar 

  19. Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849–13880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ge DH, Stekas ND, Varlotta CG, et al. Comparative analysis of two transforaminal lumbar interbody fusion techniques: open TLIF versus Wiltse MIS TLIF. Spine (Phila Pa 1976). 2019;44(9):e555–e560.

    Article  Google Scholar 

  21. Hijji FY, Narain AS, Bohl DD, et al. Lateral lumbar interbody fusion: a systematic review of complication rates. Spine J. 2017;17:1412–1419.

    Article  PubMed  Google Scholar 

  22. Hsieh PC, Koski TR, O’Shaughnessy BA, et al. Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine. 2007;7:379–386.

    Article  PubMed  Google Scholar 

  23. Huang KT, Hazzard M, Thomas S, et al. Differences in the outcomes of anterior versus posterior interbody fusion surgery of the lumbar spine: a propensity score–controlled cohort analysis of 10,941 patients. J Clin Neurosci. 2015;22:848–853.

    Article  PubMed  Google Scholar 

  24. Humphreys SC, Hodges SD, Patwardhan AG, Eck JC, Murphy RB, Covington LA. Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine. 2001;26:567–571.

    Article  CAS  PubMed  Google Scholar 

  25. Jagannathan J, Sansur CA, Oskouian RJ Jr, Fu KM, Shaffrey CI. Radiographic restoration of lumbar alignment after transforaminal lumbar interbody fusion. Neurosurgery. 2009;64:955–963; discussion 963–954.

    Article  PubMed  Google Scholar 

  26. Kakinuma H, Ishii K, Ishihama H, et al. Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties. J Biomed Mater Res A. 2015;103(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  27. Karikari IO, Jain D, Owens TR, et al. Impact of subsidence on clinical outcomes and radiographic fusion rates in anterior cervical discectomy and fusion: a systematic review. J Spinal Disord Tech. 2014;27:1–10.

    Article  PubMed  Google Scholar 

  28. Keorochana G, Setrkraising K, Woratanarat P, Arirachakaran A, Kongtharvonskul J. Clinical outcomes after minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Neurosurg Rev. 2018;41:755–770.

    Article  PubMed  Google Scholar 

  29. Khechen B, Haws BE, Patel DV, et al. Comparison of postoperative outcomes between primary minimally invasive TLIF and minimally invasive TLIF with revision decompression. Spine (Phila Pa 1976). 2019;44:150–156.

    Article  Google Scholar 

  30. Kim JS, Lee KY, Lee SH, Lee HY. Which lumbar interbody fusion technique is better in terms of level for the treatment of unstable isthmic spondylolisthesis? J Neurosurg Spine. 2010;12:171–177.

    Article  PubMed  Google Scholar 

  31. Kim MC, Chung HT, Cho JL, Kim DJ, Chung NS. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion. J Spinal Disord Tech. 2013;26(2):87–92.

    Article  PubMed  Google Scholar 

  32. Kleimeyer JP, Cheng I, Alamin TF, et al. Selective anterior lumbar interbody fusion for low back pain associated with degenerative disc disease versus nonsurgical management. Spine (Phila Pa 1976). 2018;43:1372–1380.

    Article  Google Scholar 

  33. Lazennec JY, Ramare S, Arafati N, et al. Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J. 2000;9:47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Le TV, Baaj AA, Dakwar E, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976). 2012;37:1268–1273.

    Article  Google Scholar 

  35. Lee YS, Park SW, Kim YB. Direct lateral lumbar interbody fusion: clinical and radiological outcomes. J Korean Neurosurg Soc. 2014;55:248–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lestini WF, Fulghum JS, Whitehurst LA. Lumbar spinal fusion: advantages of posterior lumbar interbody fusion. Surg Technol Int. 1994;3:577–590.

    CAS  PubMed  Google Scholar 

  37. Li JX, Phan K, Mobbs R. Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg. 2017;98:113–123.

    Article  CAS  PubMed  Google Scholar 

  38. Liang Y, Shi W, Jiang C, et al. Clinical outcomes and sagittal alignment of single-level unilateral instrumented transforaminal lumbar interbody fusion with a 4 to 5-year follow-up. Eur Spine J. 2015;24(11):2560–2566.

    Article  PubMed  Google Scholar 

  39. Lin GX, Akbary K, Kotheeranurak V, et al. Clinical and radiologic outcomes of direct versus indirect decompression with lumbar interbody fusion: a matched-pair comparison analysis. World Neurosurg. 2018;119:e898–e909.

    Article  PubMed  Google Scholar 

  40. Malham GM, Ellis NJ, Parker RM, Seex KA. Clinical outcome and fusion rates after the first 30 extreme lateral interbody fusions. Scientific World Journal . 2012;2012:246989.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malham GM, Parker RM, Ellis NJ, Blecher CM, Chow FY, Claydon MH. Anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2: a prospective study of complications. J Neurosurg Spine. 2014;21:851–860.

    Article  PubMed  Google Scholar 

  42. Malham GM, Parker RM, Goss B, Blecher CM. Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J. 2015;24 Suppl 3:339–345.

    Article  PubMed  Google Scholar 

  43. Malham GM, Ellis NJ, Parker RM, et al. Maintenance of segmental lordosis and disk height in stand-alone and instrumented extreme lateral interbody fusion (XLIF). Clin Spine Surg. 2017;30:E90–E98.

    Article  PubMed  Google Scholar 

  44. McAfee PC, DeVine JG, Chaput CD, et al. The indications for interbody fusion cages in the treatment of spondylolisthesis: analysis of 120 cases. Spine (Phila Pa 1976). 2005;30:S60–S65.

    Article  Google Scholar 

  45. McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18:1250–1260.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mehren C, Mayer HM, Zandanell C, Siepe CJ, Korge A. The oblique anterolateral approach to the lumbar spine provides access to the lumbar spine with few early complications. Clin Orthop Relat Res. 2016;474:2020–2027.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miscusi M, Ramieri A, Forcato S, et al. Comparison of pure lateral and oblique lateral inter-body fusion for treatment of lumbar degenerative disk disease: a multicentric cohort study. Eur Spine J. 2018;27:222–228.

    Article  PubMed  Google Scholar 

  48. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIFJ Spine Surg. 2015;1(1):2–18.

    PubMed  PubMed Central  Google Scholar 

  49. Mobbs RJ, Phan K, Assem Y, Pelletier M, Walsh WR. Combination Ti/PEEK ALIF cage for anterior lumbar interbody fusion: early clinical and radiological results. J Clin Neurosci. 2016;34:94–99.

    Article  CAS  PubMed  Google Scholar 

  50. Mobbs RJ, Phan K, Daly D, Rao PJ, Lennox A. Approach-related complications of anterior lumbar interbody fusion: results of a combined spine and vascular surgical team. Global Spine J. 2016;6:147–154.

    Article  PubMed  Google Scholar 

  51. Najeeb S, Khurshid Z, Matinlinna JP, Siddiqui F, Nassani MZ, Baroudi K. Nanomodified PEEK dental implants: bioactive composites and surface modification—a review. Int J Dent. 2015;2015:381759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014;23:2150–2155.

    Article  PubMed  Google Scholar 

  53. Niu CC, Liao JC, Chen WJ, Chen LH. Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages. J Spinal Disord Tech. 2010;23:310–316.

    Article  PubMed  Google Scholar 

  54. Noiset O, Schneider YJ, Marchand-Brynaert J. Fibronectin adsorption or/and covalent grafting on chemically modified PEEK film surfaces. J Biomater Sci Polym Ed. 1999;10:657–677.

    Article  CAS  PubMed  Google Scholar 

  55. Noordhoek I, Koning MT, Jacobs WCH, Vleggeert-Lankamp CLA. Incidence and clinical relevance of cage subsidence in anterior cervical discectomy and fusion: a systematic review. Acta Neurochir. 2018;160:873–880.

    Article  PubMed  Google Scholar 

  56. Ohtori S, Orita S, Yamauchi K, et al. Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J. 2015;56:1051–1059.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. 2012;12:265–272.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Olivares-Navarrete R, Hyzy SL, Gittens RAs, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013;13:1563–1570.

    Article  PubMed  Google Scholar 

  59. Phan K, Mobbs RJ. Oblique lumbar interbody fusion for revision of non-union following prior posterior surgery: a case report. Orthop Surg. 2015;7:364–367.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Phan K, Rao PJ, Scherman DB, Dandie G, Mobbs RJ. Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci. 2015;22:1714–1721.

    Article  PubMed  Google Scholar 

  61. Phan K, Thayaparan GK, Mobbs RJ. Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion—systematic review and meta-analysis. Br J Neurosurg. 2015;29:705–711.

    Article  PubMed  Google Scholar 

  62. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014;6:81–89.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rao PJ, Ghent F, Phan K, Lee K, Reddy R, Mobbs RJ. Stand-alone anterior lumbar interbody fusion for treatment of degenerative spondylolisthesis. J Clin Neurosci. 2015;22:1619–1624.

    Article  PubMed  Google Scholar 

  64. Rao PJ, Maharaj MM, Phan K, Lakshan Abeygunasekara M, Mobbs RJ. Indirect foraminal decompression after anterior lumbar interbody fusion: a prospective radiographic study using a new pedicle-to-pedicle technique. Spine J. 2015;15:817–824.

    Article  PubMed  Google Scholar 

  65. Rao PJ, Phan K, Giang G, Maharaj MM, Phan S, Mobbs RJ. Subsidence following anterior lumbar interbody fusion (ALIF): a prospective study. J Spine Surg. 2017;3:168–175.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Resnick DK, Choudhri TF, Dailey AT, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 7: intractable low-back pain without stenosis or spondylolisthesis. J Neurosurg Spine. 2005;2:670–672.

    Article  PubMed  Google Scholar 

  67. Rickert M, Fleege C, Tarhan T, et al. Transforaminal lumbar interbody fusion using polyetheretherketone oblique cages with and without a titanium coating: a randomised clinical pilot study. Bone Joint J. 2017;99-B(10):1366–1372.

    Article  CAS  PubMed  Google Scholar 

  68. Sakeb N, Ahsan K. Comparison of the early results of transforaminal lumbar interbody fusion and posterior lumbar interbody fusion in symptomatic lumbar instability. Indian J Orthop 2013;47(3):255–263.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schimmel JJ, Poeschmann MS, Horsting PP, Schonfeld DH, van Limbeek J, Pavlov PW. PEEK cages in lumbar fusion: mid-term clinical outcome and radiologic fusion. Clin Spine Surg. 2016;29:E252–E258.

    Article  PubMed  Google Scholar 

  70. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy JP, Pagala M. Adult scoliosis: a quantitative radiographic and clinical analysis. Spine (Phila Pa 1976). 2002;27:387–392.

    Article  Google Scholar 

  71. Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci. 2017;44:23–29.

    Article  CAS  PubMed  Google Scholar 

  72. Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6:89–97.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Upadhyayula PS, Curtis EI, Yue JK, Sidhu N, Ciacci JD. Anterior versus transforaminal lumbar interbody fusion: perioperative risk factors and 30-day outcomes. Int J Spine Surg. 2018;12:533–542.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wuertz-Kozak K, Bleisch D, Nadi N, et al. Sexual and urinary function following anterior lumbar surgery in females. Neurourol Urodyn. 2019;38(2):632–636.

    Article  PubMed  Google Scholar 

  75. Yee TJ, Joseph JR, Terman SW, Park P. Expandable vs static cages in transforaminal lumbar interbody fusion: radiographic comparison of segmental and lumbar sagittal angles. Neurosurgery. 2017;81:69–74.

    Article  PubMed  Google Scholar 

  76. Yilmaz E, Iwanaga J, Moisi M, et al. Risks of colon injuries in extreme lateral approaches to the lumbar spine: an anatomical study. Cureus. 2018;10:e2122.

    PubMed  PubMed Central  Google Scholar 

  77. Zhang Q, Yuan Z, Zhou M, Liu H, Xu Y, Ren Y. A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord. 2014;15:367.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang Z, Li H, Fogel GR, Liao Z, Li Y, Liu W. Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis. World Neurosurg. 2018;111:e581–e591.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeraz Qureshi MD, MBA.

Ethics declarations

Conflict of Interest

Ravi Verma, MD, MBA, and Sohrab Virk, MD, MBA, declare that they have no conflicts of interest. Sheeraz Qureshi, MD, MBA, reports receiving consulting fees or royalties from Stryker, K2M, Paradigm Spine, Globus Medical, Medical Device Business Services, and Pacira Pharmaceuticals; owning shares of Avaz Surgical and Vital 5; and receiving royalties from RTI and Zimmer Biomet, outside the submitted work.

Human/Animal Rights

N/A

Informed Consent

N/A

Required Author Forms:

Disclosure forms provided by the authors are available with the online version of this article.

Electronic supplementary material

ESM 1

(PDF 1224 kb)

ESM 2

(PDF 1225 kb)

ESM 3

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Virk, S. & Qureshi, S. Interbody Fusions in the Lumbar Spine: A Review. HSS Jrnl 16, 162–167 (2020). https://doi.org/10.1007/s11420-019-09737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11420-019-09737-4

Keywords

Navigation