Skip to main content
Log in

Metabolism of the new synthetic cannabinoid EG-018 in human hepatocytes by high-resolution mass spectrometry

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

The present study aims to recommend appropriate urinary marker metabolites for documenting EG-018 consumption by investigating its metabolism in human hepatocytes.

Methods

For metabolite profiling, 10 µM EG-018 was incubated in human hepatocytes for 3 h. Metabolite identification in hepatocyte samples was accomplished with high-resolution mass spectrometry via information-dependent data acquisition.

Results

EG-018 was highly metabolized in human hepatocytes. A total of eight metabolites were characterized, mainly generated from hydroxylation and carbonylation on the pentyl chain. Dihydrodiol formation, N-dealkylation, and glucuronidation of hydroxylated metabolites were the other major pathways.

Conclusions

The primary metabolites of EG-018 in human hepatocyte incubation were pentyl hydroxylated EG-018 (M6) and pentyl carbonylated EG-018 (M8). These two metabolites are proposed as the best urinary markers for confirming EG-018 intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(suppl 1):S163–S171

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Huffman JW, Dai D, Martin BR, Compton DR (1994) Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett 4:563–566

    Article  Google Scholar 

  3. Castaneto MS, Wohlfarth A, Pang S, Zhu M, Scheidweiler KB, Kronstrand R, Huestis MA (2015) Identification of AB-FUBINACA metabolites in human hepatocytes and urine using high-resolution mass spectrometry. Forensic Toxicol 33:295–310

    Article  CAS  Google Scholar 

  4. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66

    Article  CAS  Google Scholar 

  5. Scheidweiler KB, Jarvis MJ, Huestis MA (2015) Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem 407:883–897

    Article  PubMed  CAS  Google Scholar 

  6. European Monitoring Centre for Drugs and Drug Addiction (2009) Understanding the ‘Spice’ phenomenon. https://doi.org/10.2810/27063

  7. Cooper ZD (2016) Adverse effects of synthetic cannabinoids: management of acute toxicity and withdrawal. Curr Psychiatry Rep 18:52

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108:534–544

    Article  PubMed  Google Scholar 

  9. Kemp AM, Clark MS, Dobbs T, Galli R, Sherman J, Cox R (2016) Top 10 facts you need to know about synthetic cannabinoids: not so nice spice. Am J Med 129:240–244.e1

    Article  PubMed  CAS  Google Scholar 

  10. Law R, Schier J, Martin C, Chang A, Wolkin A (2015) Notes from the field: increase in reported adverse health effects related to synthetic cannabinoid use—United States, January-May 2015. MMWR Morb Mortal Wkly Rep 64:618–619

    PubMed  PubMed Central  Google Scholar 

  11. Wohlfarth A, Gandhi AS, Pang S, Zhu M, Scheidweiler KB, Huestis MA (2014) Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog, 5F-PB-22, by human hepatocyte incubation and high-resolution mass spectrometry. Anal Bioanal Chem 406:1763–1780

    Article  PubMed  CAS  Google Scholar 

  12. Bijlsma L, Ibáñez M, Miserez B, Ma STF, Shine T, Ramsey J, Hernández F (2017) Mass spectrometric identification and structural analysis of the third-generation synthetic cannabinoids on the UK market since the 2013 legislative ban. Forensic Toxicol 35:376–388

    Article  CAS  Google Scholar 

  13. Worst TJ, Sprague JE (2015) The “pharmacophore rule” and the “spices”. Forensic Toxicol 33:170–173

    Article  Google Scholar 

  14. Uchiyama N, Kikura-Hanajiri R (2016) “Dangerous drugs” and synthetic cannabinoids (in Japanese). Farumashia 52:855–859. https://doi.org/10.14894/faruawpsj.52.9_855

    Article  CAS  Google Scholar 

  15. Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA (2016) High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem 62:157–169

    Article  PubMed  CAS  Google Scholar 

  16. Hutter M, Moosmann B, Kneisel S, Auwärter V (2013) Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism. J Mass Spectrom 48:885–894

    Article  PubMed  CAS  Google Scholar 

  17. Brents LK, Reichard EE, Zimmerman SM, Moran JH, Fantegrossi WE, Prather PL (2011) Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS One 6:e21917. https://doi.org/10.1371/journal.pone.0021917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Baranovsky A, Shafran Y (2014) Synthetic cannabinoids as designer drugs: new representatives of indol-3-carboxylates series and indazole-3-carboxylates as novel group of cannabinoids. Identification and analytical data. Forensic Sci Int 244:263–275

    Article  PubMed  CAS  Google Scholar 

  19. Wohlfarth A, Castaneto MS, Zhu M, Pang S, Scheidweiler KB, Kronstrand R, Huestis MA (2015) Pentylindole/pentylindazole synthetic cannabinoids and their 5-fluoro analogs produce different primary metabolites: metabolite profiling for AB-PINACA and 5F-AB-PINACA. AAPS J 17:660–677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, James LP, Hollenberg PF, Prather PL, Radominska-Pandya A, Moran JH (2012) Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos 40:2174–2184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sobolevsky T, Prasolov I, Rodchenkov G (2012) Detection of urinary metabolites of AM-2201 and UR-144, two novel synthetic cannabinoids. Drug Test Anal 4:745–753

    Article  PubMed  CAS  Google Scholar 

  22. Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S (2016) A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol 54:1–13

    Article  CAS  Google Scholar 

  23. Andersson M, Diao X, Wohlfarth A, Scheidweiler KB, Huestis MA (2016) Metabolic profiling of new synthetic cannabinoids AMB and 5F-AMB by human hepatocyte and liver microsome incubations and high-resolution mass spectrometry. Rapid Commun Mass Spectrom 30:1067–1078

    Article  PubMed  CAS  Google Scholar 

  24. Reddit (2017) https://www.reddit.com/search?q=EG-018. Accessed 11 Oct 2017

  25. Diao X, Pang X, Xie C, Guo Z, Zhong D, Chen X (2014) Bioactivation of 3-n-butylphthalide via sulfation of its major metabolite 3-hydroxy-NBP: mediated mainly by sulfotransferase 1A1. Drug Metab Dispos 42:774–781

    Article  PubMed  CAS  Google Scholar 

  26. Carlier J, Diao X, Wohlfarth A, Scheidweiler K, Huestis MA (2017) In vitro metabolite profiling of ADB-FUBINACA, a new synthetic cannabinoid. Curr Neuropharmacol 15:682–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Diao X, Huestis MA (2017) Approaches, challenges, and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther 101:239–253

    Article  PubMed  CAS  Google Scholar 

  28. Wilkinson SM, Banister SD, Kassiou M (2015) Bioisosteric fluorine in the clandestine design of synthetic cannabinoids. Aust J Chem 68:4–8

    Article  CAS  Google Scholar 

  29. Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA (2016) In vitro and in vivo human metabolism of synthetic cannabinoids FDU-PB-22 and FUB-PB-22. AAPS J 18:455–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Diao X, Carlier J, Zhu M, Pang S, Kronstrand R, Scheidweiler KB, Huestis MA (2017) In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201). Forensic Toxicol 35:20–32

    Article  PubMed  CAS  Google Scholar 

  31. Maurer HH, Meyer MR (2016) High-resolution mass spectrometry in toxicology: current status and future perspectives. Arch Toxicol 90:2161–2172

    Article  PubMed  CAS  Google Scholar 

  32. Zhu Y, Li L, Zhang G, Wan H, Yang C, Diao X, Chen X, Zhang L, Zhong D (2016) Metabolic characterization of pyrotinib in humans by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B 1033-1034:117–127

    Article  CAS  Google Scholar 

  33. Kronstrand R, Brinkhagen L, Birath-Karlsson C, Roman M, Josefsson M (2014) LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. Anal Bioanal Chem 406:3599–3609

    Article  PubMed  CAS  Google Scholar 

  34. Jiang J, Pang X, Li L, Dai X, Diao X, Chen X, Zhong D, Wang Y, Chen Y (2016) Effect of N-methyl deuteration on metabolism and pharmacokinetics of enzalutamide. Drug Des Dev Ther 10:2181–2191. https://doi.org/10.2147/DDDT.S111352

    Article  CAS  Google Scholar 

  35. Öztürk YE, Yeter O, Öztürk S, Karakus G, Ates I, Buyuk Y, Yurdun T (2017) Detection of metabolites of the new synthetic cannabinoid CUMYL-4CN-BINACA in authentic urine samples and human liver microsomes using high-resolution mass spectrometry. Drug Test Anal. https://doi.org/10.1002/dta.2248

    Article  PubMed  Google Scholar 

  36. Diao X, Scheidweiler KB, Wohlfarth A, Zhu M, Pang S, Huestis MA (2016) Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes. Forensic Toxicol 34:256–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hutter M, Broecker S, Kneisel S, Auwärter V (2012) Identification of the major urinary metabolites in man of seven synthetic cannabinoids of the aminoalkylindole type present as adulterants in ‘herbal mixtures’ using LC-MS/MS techniques. J Mass Spectrom 47:54–65

    Article  PubMed  CAS  Google Scholar 

  38. Diao X, Ma Z, Wang H, Zhong D, Zhang Y, Jin J, Fan Y, Chen X (2013) Simultaneous quantitation of 3-n-butylphthalide (NBP) and its four major metabolites in human plasma by LC-MS/MS using deuterated internal standards. J Pharm Biomed Anal 78-79:19–26

    Article  PubMed  CAS  Google Scholar 

  39. Diao X, Deng P, Xie C, Li X, Zhong D, Zhang Y, Chen X (2013) Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Drug Metab Dispos 41:430–444

    Article  PubMed  CAS  Google Scholar 

  40. Carlier J, Diao X, Scheidweiler KB, Huestis MA (2017) Distinguishing intake of new synthetic cannabinoids ADB-PINACA and 5F-ADB-PINACA with human hepatocyte metabolites and high-resolution mass spectrometry. Clin Chem 63:1008–1021

    Article  PubMed  CAS  Google Scholar 

  41. Castaneto MS, Wohlfarth A, Desrosiers NA, Hartman RL, Gorelick DA, Huestis MA (2015) Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab Rev 47:124–174

    Article  PubMed  CAS  Google Scholar 

  42. Kavanagh P, Grigoryev A, Melnik A, Simonov A (2012) The identification of the urinary metabolites of 3-(4-methoxybenzoyl)-1-pentylindole (RCS-4), a novel cannabimimetic, by gas chromatography-mass spectrometry. J Anal Toxicol 36:303–311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn A. Huestis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, X., Carlier, J., Zhu, M. et al. Metabolism of the new synthetic cannabinoid EG-018 in human hepatocytes by high-resolution mass spectrometry. Forensic Toxicol 36, 304–312 (2018). https://doi.org/10.1007/s11419-018-0404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-018-0404-2

Keywords

Navigation