Skip to main content
Log in

Drug-drug interactions and masking effects in sport doping: influence of miconazole administration on the urinary concentrations of endogenous anabolic steroids

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

We have investigated the influence of oral miconazole administration on the urinary concentrations of endogenous anabolic androgenic steroids of doping relevance, specifically considering all these compounds routinely monitored in doping control analysis, in the framework of the steroidal module of the “athlete biological passport”, and other steroids, including dehydroepiandrosterone, 5α-dihydrotestosterone, and the hydroxylated metabolites recently proposed as additional markers of the intake of testosterone-related steroids (16α-hydroxy-androsterone, 16α-hydroxy-etiocholanolone, 6β-hydroxy-androsterone, 6β-hydroxy-etiocholanolone, 7α-hydroxy-dehydroepiandrosterone, and 7β-hydroxy-dehydroepiandrosterone). Urinary concentrations of the final metabolic products of the glucocorticoid biosynthetic pathways (11β-hydroxy-androsterone and 11β-hydroxy-etiocholanolone, the formerly used as an endogenous reference compound for the gas chromatography–combustion-isotope ratio mass spectrometry confirmation analysis) were also monitored. Two healthy Caucasian volunteers exhibiting physiologically high testosterone/epitestosterone ratios and elevated concentrations of the main target steroids were selected for the study. Miconazole was administered orally (500 mg/day) for 1 week. Multiple urine samples were collected for 1 week before and during the treatment, and analyzed according to a validated analytical procedure based on gas chromatography–electron ionization-mass spectrometry in selected ion monitoring mode. Our results indicated that oral administration of miconazole decreased the urinary concentrations of androsterone, and to a lesser extent, of etiocholanolone (both detected as the sum of free and glucuronated steroids), and consequently the androsterone/testosterone and androsterone/etiocholanolone ratios. Furthermore, the urinary concentrations of 16α-hydroxy-etiocholanolone, 16α-hydroxy-androsterone, 7β-hydroxy-dehydroepiandrosterone, 6β-hydroxy-etiocholanolone, 7α-hydroxy-dehydroepiandrosterone, 6β-hydroxy-androsterone, 11β-hydroxy-androsterone, and 11β-hydroxy-etiocholanolone were significantly suppressed. This evidence suggests the potential intake of miconazole whenever the urinary steroid profile is characterized by abnormally low concentrations of the above-mentioned steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. The World Anti-Doping Code (2016) The 2016 prohibited list international standard. World Anti-Doping Agency, Montreal. http://www.wada-ama.org. Accessed 6 Jan 2016

  2. Rapporto di attività di controllo antidoping, Ministero della Salute (2015) Direzione generale della prevenzione sanitaria, anno 2015 Gennaio-Giugno. http://www.salute.gov.it/imgs/C_17_pubblicazioni_2430_allegato.pdf. Accessed 2 Dec 2015

  3. Wim VT, Delbeke FT (2008) Declared use of medication in sports. Clin J Sport Med 18:143–147

    Article  Google Scholar 

  4. Corrigan B, Rymantas K (2003) Medication use in athletes selected for doping control at the Sydney Olympics (2000). Clin J Sport Med 13:33–40

    Article  PubMed  Google Scholar 

  5. Huang SH, Johnson K, Pipe AL (2006) The use of dietary supplements and medications by Canadian athletes at the Atlanta and Sydney Olympic Games. Clin J Sport Med 16:27–33

    Article  PubMed  Google Scholar 

  6. Tscholl P, Junge A, Dvorak J (2008) The use of medication and nutritional supplements during FIFA World Cups 2002 and 2006. Br J Sports Med 42:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geyer H, Schänzer W, Donike M (1992) Probenecid as masking agent in dope control—inhibition of the urinary excretion of steroid glucuronides. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S (eds) 10th Cologne workshop on dope analysis, 7th to 12th June 1992. Sport und Buch Strauß, Köln, pp 141–145

    Google Scholar 

  8. Mareck U, Geyer H, Opfermann G, Thevis M, Schänzer W (2008) Factors influencing the steroid profile in doping control analysis. J Mass Spectrom 43:877–891

    Article  CAS  PubMed  Google Scholar 

  9. Ventura R, Segura J (2010) Masking and manipulation. In: Thieme D, Hemmersbach P (eds) Doping in sports, handbook of experimental pharmacology 195. Springer, Berlin, pp 327–354

    Google Scholar 

  10. Botrè F, de la Torre X, Donati F, Mazzarino M (2014) Narrowing the gap between the number of athletes who dope and the number of athletes who are caught: scientific advances that increase the efficacy of antidoping tests. Br J Sports Med 48:833–836

    Article  PubMed  Google Scholar 

  11. Botrè F (2015) Masking and unmasking strategies in sport doping. In: Georgakopoulos K, Alsayrafi M (eds) Advances and challenges in antidoping analysis. Future Sciences, London, pp 167–182

    Google Scholar 

  12. Mazzarino M, de la Torre X, Fiacco I, Palermo A, Botrè F (2014) Drug-drug interaction and doping, part 1: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of toremifene. Drug Test Anal 6:482–491

    Article  CAS  PubMed  Google Scholar 

  13. Mazzarino M, de la Torre X, Fiacco I, Botrè F (2014) Drug-drug interaction and doping, part 2: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of stanozolol. Drug Test Anal 6:969–977

    Article  CAS  PubMed  Google Scholar 

  14. World Anti-Doping Agency (2014) Decision limits for the confirmatory quantification of threshold substances (WADA Technical Document TD2014DL). http://www.wada-ama.org. Accessed 6 Jan 2016

  15. Mareck U, Schultze G, Geyer H, Schänzer W (2002) The appearance of urinary 19-norandrosterone during pregnancy. Eur J Sport Sci 2:1–7

    Article  Google Scholar 

  16. Palermo A, Alessi B, Botrè F, Torre X, Fiacco I, Mazzarino M (2015) In vitro evaluation of the effects of anti-fungals, benzodiazepines and non-steroidal anti-inflammatory drugs on the glucuronidation of 19-norandrosterone: implications on doping control analysis. Drug Test Anal. doi:10.1002/dta.1897

    PubMed  Google Scholar 

  17. Sottas PE, Saudan C, Schweizer C, Baume N, Mangin P, Saugy M (2008) From population- to subject-based limits of T/E ratio to detect testosterone abuse in elite sports. Forensic Sci Int 174:166–172

    Article  CAS  PubMed  Google Scholar 

  18. Rane A, Ekström L (2012) Androgens and doping tests: genetic variation and pit-falls. Br J Clin Pharmacol 74:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jakobsson J, Ekström L, Inotsume N, Garle M, Lorentzon M, Ohlsson C, Rane A (2006) Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J Clin Endocrinol Metab 91:687–693

    Article  CAS  PubMed  Google Scholar 

  20. Donike M, Rauth S, Mareck-Engelke U, Geyer H, Nitschke R (1994) Evaluation of longitudinal studies, the determination of subject based reference ranges of the testosterone/epitestosterone ratio. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S (eds) 11th Cologne workshop on dope analysis. Sport und Buch Strauß, Köln, pp 33–39

    Google Scholar 

  21. Donike M, Mareck-Engelke U, Rauth S (1995) Statistical evaluation of longitudinal studies, part 2: the usefulness of subject based reference ranges. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S (eds) 12th Cologne workshop on dope analysis. Sport und Buch Strauß, Köln, pp 157–165

    Google Scholar 

  22. Sottas PE, Robinson N, Rabin O, Saugy M (2011) The athlete biological passport. Clin Chem 57:969–976

    Article  CAS  PubMed  Google Scholar 

  23. Saugy M, Lundby C, Robinson N (2014) Monitoring of biological markers indicative of doping: the athlete biological passport. Br J Sports Med 48:827–832

    Article  PubMed  Google Scholar 

  24. Sottas PE, Baume N, Saudan C, Schweizer C, Kamber M, Saugy M (2007) Bayesian detection of abnormal values in longitudinal biomarkers with an application to T/E ratio. Biostatistics 8:285–296

    Article  PubMed  Google Scholar 

  25. Van Renterghem P, Van Eenoo P, Van Thuyne W, Geyer H, Schänzer W, Delbeke FT (2008) Validation of an extended method for the detection of the misuse of endogenous steroids in sports, including new hydroxylated metabolites. J Chromatogr B 876:225–235

    Article  Google Scholar 

  26. Van Renterghem P, Van Eenoo P, Sottas PE, Saugy M, Delbeke F (2010) Subject-based steroid profiling and the determination of novel biomarkers for DHT and DHEA misuse in sports. Drug Test Anal 2:582–588

    Article  PubMed  Google Scholar 

  27. Van Renterghem P, Van Eenoo P, Delbeke FT (2010) Population based evaluation of a multi-parametric steroid profiling on administered endogenous steroids in single low dose. Steroids 75:1047–1057

    Article  PubMed  Google Scholar 

  28. Van Renterghem P, Van Eenoo P, Sottas PE, Saugy M, Delbeke F (2011) A pilot study on subject-based comprehensive steroid profiling: novel biomarkers to detect testosterone misuse in sports. Clin Endocrinol 75:134–140

    Article  Google Scholar 

  29. Parr MK, Schänzer W (2010) Detection of the misuse of steroids in doping control. J Steroid Biochem 121:528–537

    Article  CAS  Google Scholar 

  30. Van Renterghem P, Van Eenoo P, Geyer H, Schänzer W, Delbeke FT (2010) Reference ranges for urinary concentrations and ratios of endogenous steroids, which can be used as markers for steroid misuse, in a Caucasian population of athletes. Steroids 75:154–163

    Article  PubMed  Google Scholar 

  31. Kuuranne T, Saugy M, Baume N (2014) Confounding factors and genetic polymorphism in the evaluation of individual steroid profiling. Br J Sports Med 48:848–855

    Article  PubMed  PubMed Central  Google Scholar 

  32. World Anti-Doping Agency (2015) Endogenous anabolic androgenic steroids measurement and reporting, WADA Technical Document TD2016EAAS. http://www.wada-ama.org. Accessed 6 Jan 2016

  33. Thevis M, Geyer H, Mareck U, Flenker U, Schänzer W (2007) Doping control analysis of the 5-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolite. Ther Drug Monit 29:236–247

    Article  CAS  PubMed  Google Scholar 

  34. Feldman D (1986) Ketoconazole and other imidazole derivatives as inhibitors of steroidogenesis. Endoc Rev 7:409–420

    Article  CAS  Google Scholar 

  35. Rajfer J, Sikka SC, Rivera F, Handelsman J (1986) Mechanism of inhibition of human testicular steroidogenesis by oral ketoconazole. J Clin Endocr Metab 63:1193–1198

    Article  CAS  PubMed  Google Scholar 

  36. Rendic S (1996) Human cytochrome P450 (CYP) enzymes in doping control: metabolism, interactions, adverse effects. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S (eds) Recent advances in doping analysis. Proceedings of the 13th Cologne workshop on dope analysis. Sport und Buch Strauß, Köln, pp 13–53

  37. Touchette MA, Chandrasekar PH, Milad MA, Edwards DJ (1992) Contrasting effects of fluconazole and ketoconazole on phenytoin and testosterone disposition in man. Br J Clin Pharmacol 34:75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kicman AT, Oftebro H, Walker C, Norman N, Cowan DA (1993) Potential use of ketoconazole in a dynamic endocrine test to differentiate between biological outliers and testosterone use by athletes. Clin Chem 39:1798–1803

    CAS  PubMed  Google Scholar 

  39. Oftebro H, Jensen J, Mowinckel P, Norli HR (1994) Establishing a ketoconazole suppression test for verifying testosterone administration in the doping control of athletes. J Clin Endocr Metab 78:973–977

    CAS  PubMed  Google Scholar 

  40. Ayub M, Levell MJ (1987) Inhibition of testicular 17α-hydroxylase and 17, 20-lyase but not 3β-hydroxysteroid dehydrogenase-isomerase or 17β-hydroxysteroid oxidoreductase by ketoconazole and other imidazole drugs. J Steroid Biochem 28:521–531

    Article  CAS  PubMed  Google Scholar 

  41. Kicman AT (2010) Biochemical and physiological aspects of endogenous androgens. In: Thieme D, Hemmersbach P (eds) Doping in sports, handbook of experimental pharmacology 195. Springer, Berlin, pp 25–64

    Google Scholar 

  42. Niwa T, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 28:1805–1808

    Article  CAS  PubMed  Google Scholar 

  43. Niwa T, Inoue-Yamamoto S, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 activities in human liver microsomes. Biol Pharm Bull 28:1813–1816

    Article  CAS  PubMed  Google Scholar 

  44. World Anti-Doping Agency (2015) Detection of synthetic forms of endogenous anabolic androgenic steroids by GC-C-IRMS, (WADA Technical Document TD2016 IRMS). http://www.wada-ama.org. Accessed 6 Jan 2016

  45. Mazzarino M, Abate MG, Alocci R, Rossi F, Stinchelli R, Molaioni F, de la Torre X, Botrè F (2011) Urine stability and steroid profile: towards a screening index of urine sample degradation for anti-doping purpose. Anal Chim Acta 683:221–226

    Article  CAS  PubMed  Google Scholar 

  46. Mazzarino M, Braganò MC, de la Torre X, Molaioni F, Botrè F (2011) Relevance of the selective oestrogen receptor modulators tamoxifen, toremifene and clomiphene in doping field: endogenous steroids urinary profile after multiple oral doses. Steroids 76:1400–1406

    Article  CAS  PubMed  Google Scholar 

  47. Leinonen A, Kuuranne T, Moisander T, Rautava K (2007) Artificial urine as sample matrix for calibrators and quality controls in determination of testosterone to epitestosterone ratio. In: Schanzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advances in doping analysis, vol 15. Sport und Buch Strauß, Köln, pp 401–404

    Google Scholar 

  48. Lamberts SW, Bons EG, Bruining HA, de Jong FH (1987) Differential effects of the imidazole derivatives etomidate, ketoconazole and miconazole and of metyrapone on the secretion of cortisol and its precursors by human adrenocortical cells. J Pharmacol Exp Ther 240:259–264

    CAS  PubMed  Google Scholar 

  49. Loose DS, Kan PB, Hirst MA, Marcus RA, Feldman D (1983) Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest 71:1495–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mazzarino M, de la Torre X, Fiacco I, Khevenhüller F, Botrè F (2013) Effects of ketoconazole on the excretion kinetics of methandienone. An in vivo study. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis. 21th Cologne workshop on dope analysis. Sport und Buch Strauß, Köln, pp 34–40

    Google Scholar 

Download references

Acknowledgments

This project has been supported in part by a research grant of the World Anti-Doping Agency (Project Code: 13D14MM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Botrè.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The administration studies were approved by the local ethical committee (Approval Code: Prot. 1055/2014 CE Lazio 1). Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palermo, A., Botrè, F., de la Torre, X. et al. Drug-drug interactions and masking effects in sport doping: influence of miconazole administration on the urinary concentrations of endogenous anabolic steroids. Forensic Toxicol 34, 386–397 (2016). https://doi.org/10.1007/s11419-016-0325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-016-0325-x

Keywords

Navigation