Skip to main content

Advertisement

Log in

Celastrus orbiculatus extract suppresses gastric cancer stem cells through the TGF-β/Smad signaling pathway

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) are the primary source of tumor recurrence and chemoresistance, which complicates tumor treatment and has a significant impact on poor patient prognosis. Therefore, the discovery of inhibitors that specifically target CSCs is warranted. Previous research has established that the TGF-β/Smad signaling pathway is critical for the maintenance of CSCs phenotype, thus facilitating CSCs transformation. In this regard, Celastrus orbiculatus ethyl acetate extract (COE) was shown to exert anticancer properties; however, its therapeutic impact on gastric cancer stem cells (GCSCs) remains unknown. We here demonstrate that COE displayed a strong inhibitory effect on GCSCs growth and CSCs markers. Moreover, COE was shown to efficiently inhibit the development of tumor spheres and accelerate GCSCs apoptosis. Mechanistically, we established that COE could suppress the stemness phenotype of GCSCs by inhibiting the activity of the TGF-β/Smad signaling pathway. To summarize, our data indicate that COE suppresses the malignant biological phenotype of GCSCs via the TGF-β/Smad signaling pathway. These findings shed new light on the anticancer properties of COE and suggest new strategies for the development of efficient GCSCs therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request.

References

  1. Cancer Genome Atlas Research N (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209

    Google Scholar 

  2. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, Ye XS, Do IG, Liu S, Gong L, Fu J, Jin JG, Choi MG, Sohn TS, Lee JH, Bae JM, Kim ST, Park SH, Sohn I, Jung SH, Tan P, Chen R, Hardwick J, Kang WK, Ayers M, Hongyue D, Reinhard C, Loboda A, Kim S, Aggarwal A (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21:449–456

    PubMed  CAS  Google Scholar 

  3. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143

    PubMed  CAS  Google Scholar 

  4. Norollahi SE, Mansour-Ghanaei F, Joukar F, Ghadarjani S, Mojtahedi K, Gharaei Nejad K, Hemmati H, Gharibpoor F, Khaksar R, Samadani AA (2019) Therapeutic approach of cancer stem cells (CSCs) in gastric adenocarcinoma; DNA methyltransferases enzymes in cancer targeted therapy. Biomed Pharmacother 115:108958

    PubMed  CAS  Google Scholar 

  5. Song Y, Wang Y, Tong C, Xi H, Zhao X, Wang Y, Chen L (2017) A unified model of the hierarchical and stochastic theories of gastric cancer. Br J Cancer 116:973–989

    PubMed  PubMed Central  Google Scholar 

  6. Ni T, Wang H, Zhan D, Tao L, Lv M, Wang W, Chu Z, Zhou Z, Sunagawa M, Liu Y (2021) CD133+/CD166+ human gastric adenocarcinoma cells present the properties of neoplastic stem cells and emerge more malignant features. Life Sci 269:119021

    PubMed  CAS  Google Scholar 

  7. Marquardt S, Solanki M, Spitschak A, Vera J, Putzer BM (2018) Emerging functional markers for cancer stem cell-based therapies: understanding signaling networks for targeting metastasis. Semin Cancer Biol 53:90–109

    PubMed  CAS  Google Scholar 

  8. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP (2015) Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12:445–464

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134

    PubMed  CAS  Google Scholar 

  10. Mortezaee K (2018) Human hepatocellular carcinoma: protection by melatonin. J Cell Physiol 233:6486–6508

    PubMed  CAS  Google Scholar 

  11. Najafi M, Salehi E, Farhood B, Nashtaei MS, Hashemi Goradel N, Khanlarkhani N, Namjoo Z, Mortezaee K (2019) Adjuvant chemotherapy with melatonin for targeting human cancers: a review. J Cell Physiol 234:2356–2372

    PubMed  CAS  Google Scholar 

  12. Nakano M, Kikushige Y, Miyawaki K, Kunisaki Y, Mizuno S, Takenaka K, Tamura S, Okumura Y, Ito M, Ariyama H, Kusaba H, Nakamura M, Maeda T, Baba E, Akashi K (2019) Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene 38:780–793

    PubMed  CAS  Google Scholar 

  13. Huang D, Zhang K, Zheng W, Zhang R, Chen J, Du N, Xia Y, Long Y, Gu Y, Xu J, Deng M (2021) Long noncoding RNA SGO1-AS1 inactivates TGFbeta signaling by facilitating TGFB1/2 mRNA decay and inhibits gastric carcinoma metastasis. J Exp Clin Cancer Res 40:342

    PubMed  PubMed Central  Google Scholar 

  14. Derynck R, Turley SJ, Akhurst RJ (2021) TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18:9–34

    PubMed  Google Scholar 

  15. Shen Y, Chen BL, Zhang QX, Zheng YZ, Fu Q (2019) Traditional uses, secondary metabolites, and pharmacology of Celastrus species—a review. J Ethnopharmacol 241:111934

    PubMed  CAS  Google Scholar 

  16. Yang N, Wang H, Lin H, Liu J, Zhou B, Chen X, Wang C, Liu J, Li P (2020) Comprehensive metabolomics analysis based on UPLC-Q/TOF-MS(E) and the anti-COPD effect of different parts of Celastrus orbiculatus Thunb. RSC Adv 10:8396–8420

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang H, Tao L, Ni T, Gu H, Jin F, Dai X, Feng J, Ding Y, Xiao W, Guo S, Hisamitsu T, Qian Y, Liu Y (2017) Anticancer efficacy of the ethyl acetate extract from the traditional Chinese medicine herb Celastrus orbiculatus against human gastric cancer. J Ethnopharmacol 205:147–157

    PubMed  CAS  Google Scholar 

  18. Zhang H, Qian Y, Liu Y, Li G, Cui P, Zhu Y, Ma H, Ji X, Guo S, Tadashi H (2012) Celastrus orbiculatus extract induces mitochondrial-mediated apoptosis in human hepatocellular carcinoma cells. J Tradit Chin Med 32:621–626

    PubMed  Google Scholar 

  19. Zhu YD, Hu L, Li P, Zhang M, Liu YQ (2018) Effects of Celastrus orbiculatus on epithelial mesenchymal transition in gastric mucosal epithelial cells by inhibiting Lgr5 expression from rats with gastric precancerous lesions. Am J Chin Med 46:1129–1143

    PubMed  CAS  Google Scholar 

  20. Gu H, Feng J, Wang H, Qian Y, Yang L, Chen J, Jin F, Shi Y, Lu S, Liu Y (2016) Celastrus orbiculatus extract inhibits the migration and invasion of human glioblastoma cells in vitro. BMC Complement Altern Med 16:387

    PubMed  PubMed Central  Google Scholar 

  21. Wang H, Chu Z, Ou S, Ni T, Dai X, Zhang X, Liu Y (2022) Celastrus orbiculatus extract inhibits the epithelial–mesenchymal transition process by transforming growth factor-beta signaling pathway in gastric cancer. Anticancer Agents Med Chem 22:2282–2291

    PubMed  CAS  Google Scholar 

  22. Jiang W, Shan TZ, Xu JJ, Chen WJ, Miao L, Lv MY, Tao L, Liu YQ (2019) Cytotoxic abietane and kaurane diterpenoids from Celastrus orbiculatus. J Nat Med 73:841–846

    PubMed  Google Scholar 

  23. Capp JP (2019) Cancer stem cells: from historical roots to a new perspective. J Oncol 2019:5189232

    PubMed  PubMed Central  Google Scholar 

  24. Spillane JB, Henderson MA (2007) Cancer stem cells: a review. ANZ J Surg 77:464–468

    PubMed  Google Scholar 

  25. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY (2018) Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018:5416923

    PubMed  PubMed Central  Google Scholar 

  26. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    PubMed  CAS  Google Scholar 

  27. Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci. https://doi.org/10.1186/s12929-018-0426-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kusoglu A, Biray Avci C (2019) Cancer stem cells: a brief review of the current status. Gene 681:80–85

    PubMed  CAS  Google Scholar 

  29. Arnold CR, Mangesius J, Skvortsova II, Ganswindt U (2020) The role of cancer stem cells in radiation resistance. Front Oncol 10:164

    PubMed  PubMed Central  Google Scholar 

  30. Shibata M, Hoque MO (2019) Targeting cancer stem cells: a strategy for effective eradication of cancer. Cancers (Basel) 11:732

    PubMed  CAS  Google Scholar 

  31. Zeng S, Shen WH, Liu L (2018) Senescence and cancer. Cancer Transl Med 4:70–74

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Afify SM, Seno M (2019) Conversion of stem cells to cancer stem cells: undercurrent of cancer initiation. Cancers (Basel) 11:345

    PubMed  CAS  Google Scholar 

  33. Bu P, Chen KY, Lipkin SM, Shen X (2013) Asymmetric division: a marker for cancer stem cells in early stage tumors? Oncotarget 4:950–951

    PubMed  PubMed Central  Google Scholar 

  34. Rich JN (2016) Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore) 95:S2–S7

    PubMed  CAS  Google Scholar 

  35. Kim WT, Ryu CJ (2017) Cancer stem cell surface markers on normal stem cells. BMB Rep 50:285–298

    PubMed  PubMed Central  Google Scholar 

  36. Li Z (2013) CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2:17

    PubMed  PubMed Central  Google Scholar 

  37. Koren A, Rijavec M, Kern I, Sodja E, Korosec P, Cufer T (2016) BMI1, ALDH1A1, and CD133 transcripts connect epithelial–mesenchymal transition to cancer stem cells in lung carcinoma. Stem Cells Int 2016:9714315

    PubMed  Google Scholar 

  38. Lundberg IV, Edin S, Eklof V, Oberg A, Palmqvist R, Wikberg ML (2016) SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer. BMC Cancer. https://doi.org/10.1186/s12885-016-2509-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A (2015) Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7:1150–1184

    PubMed  PubMed Central  Google Scholar 

  40. Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692

    PubMed  CAS  Google Scholar 

  41. Xia W, Lo CM, Poon RYC, Cheung TT, Chan ACY, Chen L, Yang S, Tsao GSW, Wang XQ (2017) Smad inhibitor induces CSC differentiation for effective chemosensitization in cyclin D1- and TGF-beta/Smad-regulated liver cancer stem cell-like cells. Oncotarget 8:38811–38824

    PubMed  PubMed Central  Google Scholar 

  42. Brown JA, Yonekubo Y, Hanson N, Sastre-Perona A, Basin A, Rytlewski JA, Dolgalev I, Meehan S, Tsirigos A, Beronja S, Schober M (2017) TGF-beta-induced quiescence mediates chemoresistance of tumor-propagating cells in squamous cell carcinoma. Cell Stem Cell 21(650–664):e658

    Google Scholar 

  43. Wang XH, Liu MN, Sun X, Xu CH, Liu J, Chen J, Xu RL, Li BX (2016) TGF-beta1 pathway affects the protein expression of many signaling pathways, markers of liver cancer stem cells, cytokeratins, and TERT in liver cancer HepG2 cells. Tumour Biol 37:3675–3681

    PubMed  CAS  Google Scholar 

  44. Yu D, Shin HS, Lee YS, Lee YC (2014) miR-106b modulates cancer stem cell characteristics through TGF-beta/Smad signaling in CD44-positive gastric cancer cells. Lab Investig 94:1370–1381

    PubMed  CAS  Google Scholar 

  45. Xie R, Chen X, Chen Z, Huang M, Dong W, Gu P, Zhang J, Zhou Q, Dong W, Han J, Wang X, Li H, Huang J, Lin T (2019) Polypyrimidine tract binding protein 1 promotes lymphatic metastasis and proliferation of bladder cancer via alternative splicing of MEIS2 and PKM. Cancer Lett 449:31–44

    PubMed  CAS  Google Scholar 

  46. Liu C, Yang Z, Wu J, Zhang L, Lee S, Shin DJ, Tran M, Wang L (2018) Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 67:1768–1783

    PubMed  CAS  Google Scholar 

  47. Matus-Nicodemos R, Vavassori S, Castro-Faix M, Valentin-Acevedo A, Singh K, Marcelli V, Covey LR (2011) Polypyrimidine tract-binding protein is critical for the turnover and subcellular distribution of CD40 ligand mRNA in CD4(+) T cells. J Immunol 186:2164–2171

    PubMed  CAS  Google Scholar 

  48. Zhu Y, Shu D, Gong X, Lu M, Feng Q, Zeng XB, Zhang H, Gao J, Guo YW, Liu L, Ma R, Zhu L, Hu Q, Ming ZY (2022) Platelet-derived TGF (transforming growth factor)-beta1 enhances the aerobic glycolysis of pulmonary arterial smooth muscle cells by PKM2 (pyruvate kinase muscle isoform 2) upregulation. Hypertension 79:932–945

    PubMed  CAS  Google Scholar 

  49. Xu T, Yan W, Wu Q, Xu Q, Yuan J, Li Y, Li P, Pan H, Ni C (2019) MiR-326 inhibits inflammation and promotes autophagy in silica-induced pulmonary fibrosis through targeting TNFSF14 and PTBP1. Chem Res Toxicol 32:2192–2203

    PubMed  CAS  Google Scholar 

  50. Zhu YD, Ba H, Chen J, Zhang M, Li P (2021) Celastrus orbiculatus extract reduces stemness of gastric cancer stem cells by targeting PDCD4 and EIF3H. Integr Cancer Ther 20:15347354211058168

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Sun Y, Tan YJ, Lu ZZ, Li BB, Sun CH, Li T, Zhao LL, Liu Z, Zhang GM, Yao JC, Li J (2018) Arctigenin inhibits liver cancer tumorigenesis by inhibiting gankyrin expression via C/EBPalpha and PPARalpha. Front Pharmacol 9:268

    PubMed  PubMed Central  Google Scholar 

  52. Wang X, Wang N, Cheung F, Lao L, Li C, Feng Y (2015) Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. J Integr Med 13:142–164

    PubMed  Google Scholar 

  53. Wang YH, Feng L, Piao BK, Zhang PT (2017) Review on research about traditional Chinese medicine in cancer stem cell. Evid Based Compl Alt 2017:1–10

    Google Scholar 

  54. Efferth T (2012) Stem cells, cancer stem-like cells, and natural products. Planta Med 78:935–942

    PubMed  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 82104946, No. 81773944, No. 81903906), Natural Science Foundation of Jiangsu Province (No. BK20210817); The Traditional Chinese Medicine Science and Technology Development Project of Jiangsu Province (Project code: QN202008); Yangzhou University International Academic Exchange Fund (YZUIAEF201902021); the China Postdoctoral Science Foundation (No.2018M642346); the China Postdoctoral Science Foundation (No.2017M611936) and the Jiangsu Postdoctoral Science Foundation (No.1701185B) to Li Tao.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Wang or Yanqing Liu.

Ethics declarations

Conflict of interest

The authors report that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 815 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, T., Chu, Z., Tao, L. et al. Celastrus orbiculatus extract suppresses gastric cancer stem cells through the TGF-β/Smad signaling pathway. J Nat Med 78, 100–113 (2024). https://doi.org/10.1007/s11418-023-01748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01748-0

Keywords

Navigation