Skip to main content
Log in

Glycyrrhizae Radix suppresses lipopolysaccharide- and diazepam-induced nerve inflammation in the hippocampus, and contracts the duration of pentobarbital- induced loss of righting reflex in a mouse model

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Nerve inflammation is linked to the development of various neurological disorders. This study aimed to examine whether Glycyrrhizae Radix effectively influences the duration of the pentobarbital-induced loss of righting reflex, which may increase in a mouse model of lipopolysaccharide (LPS)-induced nerve inflammation and diazepam-induced γ-aminobutyric acid receptor hypersensitivity. Furthermore, we examined the anti-inflammatory effects of Glycyrrhizae Radix extract on LPS-stimulated BV2 microglial cells, in vitro. Treatment with Glycyrrhizae Radix significantly decreased the duration of pentobarbital-induced loss of righting reflex in the mouse model. Furthermore, treatment with Glycyrrhizae Radix significantly attenuated the LPS-induced increases in interleukin-1β, interleukin-6, and tumor necrosis factor-alpha at the mRNA level, and it significantly reduced the number of ionized calcium-binding adapter molecule-1-positive cells in the hippocampal dentate gyrus 24 h after LPS treatment. Treatment with Glycyrrhizae Radix also suppressed the release of nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor protein in culture supernatants of LPS-stimulated BV2 cells. In addition, glycyrrhizic acid and liquiritin, active ingredients of Glycyrrhizae Radix extract, reduced the duration of pentobarbital-induced loss of righting reflex. These findings suggest that Glycyrrhizae Radix, as well as its active ingredients, glycyrrhizic acid and liquiritin, may be effective therapeutic agents for the treatment of nerve inflammation-induced neurological disorders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Material availability

Not applicable.

References

  1. Alam A, Hana Z, Jin Z, Suen KC, Ma D (2018) Surgery, neuroinflammation and cognitive impairment. EBioMedicine 37:547–556

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang T, Velagapudi R, Terrando N (2020) Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol 21:1319–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Minter MR, Taylor JM, Crack PJ (2016) The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem 136:457–474

    Article  CAS  PubMed  Google Scholar 

  4. Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ (2019) Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 15:540–555

    Article  PubMed  Google Scholar 

  5. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V (2021) Neuroinflammation and depression: a review. Eur J Neurosci 53:151–171

    Article  CAS  PubMed  Google Scholar 

  6. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kitamura Y, Hongo S, Yamashita Y, Yagi S, Otsuki K, Miki A, Okada A, Ushio S, Esumi S, Sendo T (2019) Influence of lipopolysaccharide on diazepam-modified loss of righting reflex duration by pentobarbital treatment in mice. Eur J Pharmacol 842:231–238

    Article  CAS  PubMed  Google Scholar 

  8. Hellstrom IC, Danik M, Luheshi GN, Williams S (2005) Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus 15:656–664

    Article  CAS  PubMed  Google Scholar 

  9. Cazareth J, Guyon A, Heurteaux C, Chabry J, Petit-Paitel A (2014) Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: importance of CCR2/CCL2 signaling. J Neuroinflammation 11:132

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maldonado JR (2013) Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 21:1190–1222

    Article  PubMed  Google Scholar 

  11. Olkkola KT, Ahonen J (2008) Midazolam and other benzodiazepines. Handb Exp Pharmacol 182:335–360

    Article  CAS  Google Scholar 

  12. Kawada K, Ishida T, Jobu K, Morisawa S, Kawazoe T, Nishida M, Nishimura S, Tamura N, Yoshioka S, Miyamura M (2022) Yokukansan suppresses neuroinflammation in the hippocampus of mice and decreases the duration of lipopolysaccharide- and diazepam-mediated loss of righting reflex induced by pentobarbital. J Nat Med 76:634–644

    Article  CAS  PubMed  Google Scholar 

  13. Cao Y, Wang Y, Ji C, Ye J (2004) Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J Chromatogr A 1042:203–209

    Article  CAS  PubMed  Google Scholar 

  14. Kao TC, Wu CH, Yen GC (2014) Bioactivity and potential health benefits of licorice. J Agric Food Chem 62:542–553

    Article  CAS  PubMed  Google Scholar 

  15. Yang R, Yuan BC, Ma YS, Zhou S, Liu Y (2017) The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol 55:5–18

    Article  CAS  PubMed  Google Scholar 

  16. Petramfar P, Hajari F, Yousefi G, Azadi S, Hamedi A (2020) Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinson’s disease, a randomized double blinded clinical trial. J Ethnopharmacol 247:112226

    Article  CAS  PubMed  Google Scholar 

  17. Yu JY, Ha JY, Kim KM, Jung YS, Jung JC, Oh S (2015) Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 20:13041–13054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darias V, Abdala S, Martin-Herrera D, Tello ML, Vega S (1998) CNS effects of a series of 1,2,4-triazolyl heterocarboxylic derivatives. Pharmazie 53:477–481

    CAS  PubMed  Google Scholar 

  19. Wolfman C, Viola H, Marder M, Wasowski C, Ardenghi P, Izquierdo I, Paladini AC, Medina JH (1996) Anxioselective properties of 6,3’-dinitroflavone, a high-affinity benzodiazepine receptor ligand. Eur J Pharmacol 318:23–30

    Article  CAS  PubMed  Google Scholar 

  20. Hui B, Yao X, Zhang L, Zhou Q (2020) Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinfammation in microglia BV2 cells. Naunyn Schmiedebergs Arch Pharmacol 393:1761–1768

    Article  CAS  PubMed  Google Scholar 

  21. Kawada K, Ohta T, Tanaka K, Miyamura M, Tanaka S (2019) Addition of suvorexant to ramelteon therapy for improved sleep quality with reduced delirium risk in acute stroke patients. J Stroke Cerebrovasc Dis 28:142–148

    Article  PubMed  Google Scholar 

  22. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  PubMed  Google Scholar 

  23. Kawada K, Ohta T, Tanaka K, Miyamoto N (2018) Reduction of nicardipine-related phlebitis in patients with acute stroke by diluting its concentration. J Stroke Cerebrovasc Dis 27:1783–1788

    Article  PubMed  Google Scholar 

  24. Jang EY, Choe ES, Hwang M, Kim SC, Lee JR, Kim SG, Jeon JP, Buono RJ, Yang CH (2008) Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABA(B) receptor. Eur J Pharmacol 587:124–128

    Article  CAS  PubMed  Google Scholar 

  25. Ravanfar P, Namazi G, Atigh M, Zafarmand S, Hamedi A, Salehi A, Izadi S, Borhani-Haghighi A (2016) Efficacy of whole extract of licorice in neurological improvement of patients after acute ischemic stroke. J Herb Med 6:12–17

    Article  Google Scholar 

  26. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dehkordi NG, Noorbakhshnia M, Ghaedi K, Esmaeili A, Dabaghi M (2015) Omega-3 fatty acids prevent LPS-induced passive avoidance learning and memory and CaMKII-α gene expression impairments in hippocampus of rat. Pharmacol Rep 67:370–375

    Article  CAS  PubMed  Google Scholar 

  28. Mirahmadi SM, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M (2018) Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 104:151–159

    Article  CAS  PubMed  Google Scholar 

  29. Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C, Krust A, Dupont S, Ciana P, Chambon P, Maggi A (2003) Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA 100:9614–9619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gumpricht E, Dahl R, Devereaux MW, Sokol RJ (2005) Licorice compounds glycyrrhizin and 18β-glycyrrhetinic acid are potent modulators of bile acid-induced cytotoxicity in rat hepatocytes. J Biol Chem 280:10556–10563

    Article  CAS  PubMed  Google Scholar 

  31. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    Article  CAS  PubMed  Google Scholar 

  32. Subedi L, Gaire BP, Kim S-Y, Parveen A (2021) Nitric oxide as a target for phytochemicals in anti-neuroinflammatory prevention therapy. Int J Mol Sci 22:4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ikarashi Y, Mizoguchi K (2016) Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol Ther 166:84–95

    Article  CAS  PubMed  Google Scholar 

  34. Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M, Ezoe S, Horiguchi J (2013) Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflammation 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheng CY, Ho TY, Lee EJ, Su SY, Tang NY, Hsieh CL (2008) Ferulic acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med 36:1105–1119

    Article  CAS  PubMed  Google Scholar 

  36. Khaksa G, Zolfaghari ME, Dehpour AR, Samadian T (1996) Anti-inflammatory and anti-nociceptive activity of disodium glycyrrhetinic acid hemiphthalate. Planta Med 62:326–328

    Article  CAS  PubMed  Google Scholar 

  37. Nukaya H, Yamashiro H, Fukazawa H, Ishida H, Tsuji K (1996) Isolation of inhibitors of TPA-induced mouse ear edema from Hoelen, Poria cocos. Chem Pharm Bull (Tokyo) 44:847–849

    Article  CAS  PubMed  Google Scholar 

  38. Seo MJ, Kim SJ, Kang TH, Rim HK, Jeong HJ, Um JY, Hong SH, Kim HM (2011) The regulatory mechanism of β-eudesmol is through the suppression of caspase-1 activation in mast cell-mediated inflammatory response. Immunopharmacol Immunotoxicol 33:178–185

    Article  CAS  PubMed  Google Scholar 

  39. Yuan D, Ma B, Yang JY, Xie YY, Wang L, Zhang LJ, Kano Y, Wu CF (2009) Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int Immunopharmacol 9:1549–2155

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number 20H01008.

Author information

Authors and Affiliations

Authors

Contributions

KK: conceptualization, methodology, Investigation, writing—original draft, project administration, funding acquisition. TI: conceptualization, methodology, formal analysis, investigation, writing—review and editing. KJ: validation, investigation, resources, writing—review and editing. SM: investigation. TK: investigation. MN: investigation. SN: investigation. NT: investigation. SY: investigation, data curation. MM: resources, writing—review and editing, supervision.

Corresponding author

Correspondence to Kei Kawada.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Animal experiments were approved by the Committee for the Care and Use of Laboratory Animals at Kochi University (approval no. O-0009, April 23, 2021).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawada, K., Ishida, T., Jobu, K. et al. Glycyrrhizae Radix suppresses lipopolysaccharide- and diazepam-induced nerve inflammation in the hippocampus, and contracts the duration of pentobarbital- induced loss of righting reflex in a mouse model. J Nat Med 77, 561–571 (2023). https://doi.org/10.1007/s11418-023-01700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01700-2

Keywords

Navigation