Skip to main content

Advertisement

Log in

Therapeutic effects of a standardized-flavonoid Diospyros kaki L.f. leaf extract on transient focal cerebral ischemia-induced brain injury in mice

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This study aimed to investigate the neuroprotective and therapeutic effects of Diospyros kaki L.f. leaves (DK) on transient focal cerebral ischemic injury and underlying mechanisms using a middle cerebral artery occlusion (MCAO) model of mice. The animals received the MCAO operation on day 0. The daily administrations of DK (50 and 100 mg/kg, p.o) and edaravone (6 mg/kg, i.v), a reference drug with radical scavenging activity, were started 7 days before (pre-treatment) or immediately after the MCAO operation (post-treatment) and continued during the experimental period. Histochemical, biochemical, and neurological changes and cognitive performance were evaluated. MCAO caused cerebral infarction and neuronal cell loss in the cortex, striatum, and hippocampus in a manner accompanied by spatial cognitive deficits. These neurological and cognitive impairments caused by MCAO were significantly attenuated by pre- and post-ischemic treatments with DK and edaravone, suggesting that DK, like edaravone, has therapeutic potential for cerebral ischemia-induced brain damage. DK and edaravone suppressed MCAO-induced changes in biomarkers for apoptosis (TUNEL-positive cell number and cleaved caspase-3 protein expression) and oxidative stress (glutathione and malondialdehyde contents) in the brain. Interestingly, DK, but not edaravone, mitigated an increase in blood–brain permeability and down-regulation of vascular endothelial growth factor protein expression caused by MCAO. Although the exact chemical constituents implicated in the effects of DK remain to be clarified, the present results indicate that DK exerts neuroprotective and therapeutic activity against transient focal cerebral ischemia-induced injury probably by suppressing oxidative stress, apoptotic process, and mechanisms impairing blood–brain barrier integrity in the brain.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Stephen MD, Donnan G (2019) Ischaemic stroke. Nat Rev Dis Primer 5(1):70. https://doi.org/10.1038/s41572-019-0118-8

    Article  Google Scholar 

  2. Lyden S, Wold J (2022) Acute treatment of ischemic stroke. Neurol Clin 40(1):17–32. https://doi.org/10.1016/j.ncl.2021.08.002

    Article  PubMed  Google Scholar 

  3. Frank D, Zlotnik A, Boyko M, Gruenbaum BF (2022) The development of novel drug treatments for stroke patients: a review. Int J Mol Sci 23(10):5796. https://doi.org/10.3390/ijms23105796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu T, Wang L, Wang LP, Wan Q (2022) Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: applications for natural compounds from medicinal herbs. Biomed Pharmacother 148:112719. https://doi.org/10.1016/j.biopha.2022.112719

    Article  CAS  PubMed  Google Scholar 

  5. Qin C, Yang S, Chu YH, Zang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7(1):215. https://doi.org/10.1038/s41392-022-01064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J (2019) Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 162:132–146. https://doi.org/10.1016/j.ejmech.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  7. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6(1):11. https://doi.org/10.1186/1750-1326-6-11

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nguyen LTT, Pham ATV, Le XT (2022) Standardized flavonoid extract from Diospyros kaki L.f. leaves improves dyslipimedia in high-cholesterol diet fed rats. J Med Mater 27(2):112–116

    Google Scholar 

  9. Le TX, Pham HTN, Nguyen TV, Le DV (2017) Neuroprotective effects of Diospyros kaki and Gardenia jasminoides against ischemic neuronal injury in mice. Vietnam J Sci Technol Eng 59(3):60–64. https://doi.org/10.31276/VJSTE.59(3).60

    Article  Google Scholar 

  10. Le XT, Dang HT, Tran HN, Nguyen PT, Nguyen TV, Pham HTN, Ha OV (2018) Neuroprotective effects of flavonoid-enriched extract from Diospyros kaki leaves on cerebral ischemia-induced injury in mice. J Med Mater 23(2):104–110

    Google Scholar 

  11. Nguyen TV, Nguyen TTB, Nguyen KM, Le NT, Nguyen TTT, Phung HN, Nguyen HT (2020) Flavonoids from leaf of persimmon (Diospyros kaki L.f.). J Med Mater 25(5):266–272

    Google Scholar 

  12. Le XT, Nguyen PT, Nong PTT, Pham HTN, Nguyen TV, Kuramoto N (2016) Neuroprotective effect of Panax notoginseng against ischemic neuronal injury in mice. J Med Mater 21(3):169–174

    Google Scholar 

  13. Menzies SA, Hoff JT, Betz AL (1992) Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery 31(1):100–107. https://doi.org/10.1227/00006123-199207000-00014

    Article  CAS  PubMed  Google Scholar 

  14. Le XT, Nguyen HT, Nguyen TV, Pham HTN, Nguyen PT, Nguyen KM, Nguyen BV, Matsumoto K (2021) Ocimum sanctum Linn. extract improves cognitive deficits in olfactory bulbectomized mice via the enhancement of central cholinergic systems and VEGF expression. Evid Based Complement Altern Med 2021:6627648. https://doi.org/10.1155/2021/6627648

    Article  Google Scholar 

  15. Nguyen HT, Le XT, Nguyen TV, Phung HN, Pham HTN, Nguyen KM, Matsumoto K (2022) Ursolic acid and its isomer oleanolic acid are responsible for the anti-dementia effects of Ocimum sanctum in olfactory bulbectomized mice. J Nat Med 76(3):621–633. https://doi.org/10.1007/s11418-022-01609-2

    Article  CAS  PubMed  Google Scholar 

  16. Son HY, Han HS, Jung HW, Park YK (2009) Panax notoginseng attenuates the infarct volume in rat ischemic brain and the inflammatory response of microglia. J Pharmacol Sci 109(3):368–379. https://doi.org/10.1254/jphs.08197fp

    Article  CAS  PubMed  Google Scholar 

  17. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10(2):290–293. https://doi.org/10.1038/jcbfm.1990.47

    Article  CAS  PubMed  Google Scholar 

  18. Inada C, Le XT, Tsuneyama K, Fujiwara H, Miyata T, Matsumoto K (2013) Endogenous acetylcholine rescues NMDA-induced long-lasting hippocampal cell damage via stimulation of muscarinic M1 receptors: elucidation using organic hippocampal slice cultures. Eur J Pharmacol 699(1–3):150–159. https://doi.org/10.1016/j.ejphar.2012.11.061

    Article  CAS  PubMed  Google Scholar 

  19. Pham HTN, Phan SV, Tran HN, Phi XT, Le XT, Nguyen KM, Fujiwara H, Yoneyama M, Ogita K, Yamaguchi T, Matsumoto K (2019) Bacopa monnieri (L.) ameliorates cognitive deficits caused in a trimethyltin-induced neurotoxicity model mice. Biol Pharm Bull 42(8):1384–1393. https://doi.org/10.1248/bpb.b19-00288

    Article  CAS  PubMed  Google Scholar 

  20. Moore CL, Savenka AV, Basnakian AG (2021) TUNEL assay: a powerful tool for kidney injury evaluation. Int J Mol Sci 22(1):412. https://doi.org/10.3390/ijms22010412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Goldim MPS, Della Giustina A, Petronilho F (2019) Using Evans blue dye to determine blood-brain barrier integrity in rodents. Curr Protoc Immunol 126(1):e83. https://doi.org/10.1002/cpim.83

    Article  PubMed  Google Scholar 

  22. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6):3159–3165. https://doi.org/10.1038/nprot.2006.378

    Article  CAS  PubMed  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  24. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-Maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  25. Wang CX, Shuaib A (2007) Neuroprotective effects of free radical scavengers in stroke. Drugs Aging 24(7):537–546. https://doi.org/10.2165/00002512-200724070-00002

    Article  CAS  PubMed  Google Scholar 

  26. Bei W, Zang L, Guo J, Peng W, Xu A, Good DA, Hu Y, Wu W, Hu D, Zhu X, Wei M, Li C (2009) Neuroprotective effects of a standardized flavonoid extract from Diospyros kaki leaves. J Ethnopharmacol 126(1):134–142. https://doi.org/10.1016/j.jep.2009.07.034

    Article  CAS  PubMed  Google Scholar 

  27. Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA (2013) Global cerebral ischemia: synaptic and cognitive dysfunction. Curr Drug Targets 14(1):20–35. https://doi.org/10.2174/138945013804806514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwon J, Park JE, Lee JS, Lee JH, Hwang H, Jung SH, Kwon HC, Jang DS (2021) Chemical constituents of the leaves of Diospyros kaki (Persimmon). Plants (Basel) 10(10):2032. https://doi.org/10.3390/plants10102032

    Article  CAS  PubMed  Google Scholar 

  29. Liu P, Gao YT, Yu JJ, Cha JW, Zhao DM, Li YH, Chen JH (2013) DPPH radical scavenging activity of kaempferol. Adv Mater Res 781:1294–1297. https://doi.org/10.4028/www.scientific.net/AMR.781-784.1294

    Article  CAS  Google Scholar 

  30. Okada T, Suzuki H, Travis ZD, Zhang JH (2020) The stroke-induced blood-brain barrier disruption: current progress of inspection technique, mechanism, and therapeutic target. Curr Neuropharmacol 18(12):1187–1212. https://doi.org/10.2174/1570159X18666200528143301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  32. Zuo X, Lu J, Manaenko A, Qi X, Tang J, Mei Q, Xia Y, Hu Q (2019) MicroRNA-132 attenuates cerebral injury by protecting blood-brain-barrier in MCAO mice. Exp Neurol 316:12–19. https://doi.org/10.1016/j.expneurol.2019.03.017

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Jiang Y, Zhang G, Lin Z, Du S (2019) Protective effect of edaravone on blood-brain barrier by affecting NRF-2/HO-1 signaling pathway. Exp Ther Med 18(4):2437–2442. https://doi.org/10.3892/etm.2019.7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517. https://doi.org/10.1089/ars.2010.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37(1):7–38. https://doi.org/10.1007/s12035-007-80139

    Article  CAS  PubMed  Google Scholar 

  36. Wada T, Haigh JJ, Ema M, Hitoshi S, Chaddah R, Rossant J, Nagy A, Kooy DVD (2006) Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci 26(25):6803–6812. https://doi.org/10.1523/JNEUROSCI.0526-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao L, Su H, Cao ZF (2004) A study on sampling strategies in the figure cognitive process. J Zhejiang Univ Sci 5(9):1160–1164. https://doi.org/10.1631/jzus.2004.1160

    Article  PubMed  Google Scholar 

  38. Matsumoto M, Takada M (2013) Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron 79(5):1011–1024. https://doi.org/10.1016/j.neuron.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  39. Zhao R, Liu XQ, Wu XP, Liu YF, Zhang ZY, Yang GY, Guo S, Niu J, Wang JY, Xu KS (2010) Vascular endothelial growth factor (VEGF) enhances gastric carcinoma invasiveness via integrin alpha(v)beta6. Cancer Lett 287(2):150–156. https://doi.org/10.1016/j.canlet.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  40. Niizuma K, Yoshioka H (1802) Chen H (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1:92–99. https://doi.org/10.1016/j.bbadis.2009.09.002

    Article  CAS  Google Scholar 

  41. Bai X, Xie X, Shen Y, Bai H, Tang Y, Chang X, Li Q (2021) Experimental study on the effect of acupuncture on ERM/PI3/Akt signal pathway in rats with ischemic stroke. J Behav Brain Sci 11(10):248–256. https://doi.org/10.4236/jbbs.2021.1110020

    Article  CAS  Google Scholar 

  42. Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N, Arias C (2018) PI3K signaling in neurons: a central node for the control of multiple functions. Int J Mol Sci 19(12):3725. https://doi.org/10.3390/ijms19123725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu H, Zhang Y, Zhong Y, Ye Y, Hu X, Gu L, Xiong X (2021) Inflammation-mediated angiogenesis in ischemic stroke. Front Cell Neurosci 15:652647. https://doi.org/10.3389/fncel.2021.652647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851. https://doi.org/10.1172/JCI17977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inada C, Niu Y, Matsumoto K, Le XT, Fujiwara H (2014) Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int 75:39–47. https://doi.org/10.1016/j.neuint.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  46. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci 99(18):11946–11950. https://doi.org/10.1073/pnas.182296499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, Singh SP (2014) Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int 65:1–13. https://doi.org/10.1016/j.neuint.2013.12.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was in part financially supported by Ministry of Industry and Trade of the socialist republic of Vietnam under Grant number CTHD.DT.082/19-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xoan Thi Le.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.T.T., Le, X.T., Pham, H.N.T. et al. Therapeutic effects of a standardized-flavonoid Diospyros kaki L.f. leaf extract on transient focal cerebral ischemia-induced brain injury in mice. J Nat Med 77, 544–560 (2023). https://doi.org/10.1007/s11418-023-01699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01699-6

Keywords

Navigation