Skip to main content
Log in

Bioactive flavonoids from Flos Sophorae

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Three new flavonoid glycosides—soyaflavonosides A (1), B (2), and C (3)—together with 23 known ones were obtained from the 70% EtOH extract of Flos Sophorae (Sophora japonica, Leguminosae). Their structures were elucidated by chemical and spectroscopic methods. Among the known isolates, 14, 18, 20, 22, and 26 were isolated from the Sophora genus for the first time; 12, 19, 24, and 25 were obtained from the species firstly. Moreover, NMR data for compounds 18 and 26 are reported for the first time here. Meanwhile, compounds 4, 813, 15, 16, 19, 21, and 22 presented obvious inhibitory effects on TG accumulation in HepG2 cells. Analysis of the structure–activity relationship indicated that all of the quercetin glycosides examined in this study possess significant activity that is not significantly influenced by the amount of glycosyl present, whereas increasing the amount of glycosyl reduced the activities of isorhamnetin glycosides and orobol. In addition, a high dose (30 μmol/l) of kaempferol was found to inhibit HepG2 cell growth, while a low dose (10 μmol/l) was observed to decrease TG accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Y, Qu L, Liu L, Li X, Liu E, Han L, Fang S, Gao X, Wang T (2015) New maltol glycosides from Flos Sophorae. J Nat Med 69:249–254

    Article  CAS  PubMed  Google Scholar 

  2. Liu L, Li X, Chen Y, Sun J, Liu E, Zhang Y (2014) Study on phenolic acids from Flos Sophorae. Tianjin Zhongyiyao Daxue Xuebao 33:39–41

    Google Scholar 

  3. Liu L, Wang T, Li X, Shi P, Liu E, Zhang Y (2014) Isolation and identification of chemical constituents from Flos Sophorae II. Liaoning Zhongyiyao Daxue Xuebao 16:51–53

    Google Scholar 

  4. Liu L, Li X, Chen Y, Shi P, Qu L, Zhang Y (2014) Isolation and identification of chemical constituents from Flos Sophorae I. Tianjin Zhongyiyao Daxue Xuebao 33:230–233

    Google Scholar 

  5. Pan J, Zhang S, Yan L, Tai J, Xiao Q, Zou K, Zhou Y, Wu J (2008) Separation of flavanone enantiomers and flavanone glucoside diastereomers from Balanophora involucrata Hook. f. by capillary electrophoresis and reversed-phase high-performance liquid chromatography on a C18 column. J Chromatogr A 1185:117–129

    Article  CAS  PubMed  Google Scholar 

  6. Abdullah NH, Salim F, Ahmad R (2016) Chemical constituents of Malaysian U. cordata var. ferruginea and their in vitro α-glucosidase inhibitory activities. Molecules 21:525/1–525/11

  7. Sawabe A, Nesumi C, Morita M, Matsumoto S, Matsubara Y, Komemushi S (2005) Glycosides in African dietary leaves, Hibiscus sabdariffa. J Oleo Sci 54:185–191

    Article  CAS  Google Scholar 

  8. Nawwar M, Ayoub N, Hussein S, Hashim A, El-Sharawy R, Wende K, Harms M, Lindequist U (2012) Flavonol triglycoside and investigation of the antioxidant and cell stimulating activities of Annona muricata Linn. Arch Pharm Res 35:761–767

    Article  CAS  PubMed  Google Scholar 

  9. Aquino R, Behar I, D’Agostino M, De Simone F, Schettino O, Pizza C (1987) Phytochemical investigation on Mercurialis annua. Biochem Syst Ecol 15:667–669

    Article  CAS  Google Scholar 

  10. Qu G, Ouyang J, Kong D, Du S (2008) Studies on chemical constituents of Primula maximowiczii Regel II. Zhongguo Yaoxue Zazhi 43:1300–1304

    CAS  Google Scholar 

  11. Onodera K, Hanashiro K, Yasumoto T (2006) Camellianoside, a novel antioxident glycoside from the leaves of Camellia japonica. Biosci Biotechnol Biochem 70:1995–1998

    Article  CAS  PubMed  Google Scholar 

  12. Awaad AS, Maitland DJ, Soliman GA (2006) Hepatoprotective activity of Schouwia thebica webb. Bioorg Med Chem Lett 16:4624–4628

    Article  CAS  PubMed  Google Scholar 

  13. Yoshimitsu H, Nishida M, Hashimoto F, Tanaka M, Sakata Y, Okawa M, Nohara Y (2007) Chromone and flavonol glycosides from Delphinium hybridum cv. “Belladonna Casablanca”. J Nat Med 61:334–338

    Article  CAS  Google Scholar 

  14. Jaramillo K, Dawid C, Hofmann T, Fujimoto Y, Osorio C (2011) Identification of antioxidative flavonols and anthocyanins in Sicana odorifera fruit peel. J Agric Food Chem 59:975–983

    Article  CAS  PubMed  Google Scholar 

  15. Atay I, Kirmizibekmez H, Goren AC, Yesilada E (2015) Secondary metabolites from Sambucus ebulus. Turk J Chem 39:34–41

    Article  CAS  Google Scholar 

  16. Lou H, Yuan H, Yamazaki Y, Sasaki T, Oka S (2001) Alkaloids and flavonoids from peanut skins. Planta Med 67:345–349

    Article  CAS  PubMed  Google Scholar 

  17. Ferreres F, Tomas-Barberan FA, Tomas-Lorente F, Nieto JL, Rumbero A, Olias JM (1989) 8-Methoxykaempferol 3-sophoroside, a yellow pigment from almond pollen. Phytochemistry 28:1901–1903

    Article  CAS  Google Scholar 

  18. Veitch NC, Sutton PS, Kite GC, Ireland HE (2003) Six new isoflavones and a 5-deoxyflavonol glycoside from the leaves of Ateleiaherbert-smithii. J Nat Prod 66:210–216

    Article  CAS  PubMed  Google Scholar 

  19. Lin YL, Tsai WJ, Chen IS, Kuo YH (1998) Chemical constituents from Mucuna membranacea. J Chin Chem Soc 45:213–217

    Article  CAS  Google Scholar 

  20. Kang YM, Lee NH (2011) A new isoflavone glycoside from the stems of Talia taquetii Schneider. Bull Korean Chem Soc 32:1048–1050

    Article  CAS  Google Scholar 

  21. Sun A, Sun Q, Liu R (2007) Preparative isolation and purification of flavone compounds from Sophora japonica L. by high-speed counter-current chromatography combined with macroporous resin column separation. J Sep Sci 30:1013–1018

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Zhang Y, Chen Y (2011) Isoflavones in leaves of Belamcanda chinensis. Tianran Chanwu Yanjiuyukaifa 23:69–71

    Google Scholar 

  23. Li H, Zhai F, Yang M, Li X, Wang P, Ma X (2012) A new benzofuran derivative from Flemingia philippinensis Merr. et Rolfe. Molecules 17:7637–7644

    Article  CAS  PubMed  Google Scholar 

  24. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  CAS  PubMed  Google Scholar 

  25. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  PubMed  Google Scholar 

  26. Duchnowicz P, Broncel M, Podsędek A, Koter-Michalak M (2012) Hypolipidemic and antioxidant effects of hydroxycinnamic acids, quercetin, and cyanidin 3-glucoside in hypercholesterolemic erythrocytes (in vitro study). Eur J Nutr 51:435–443

    Article  CAS  PubMed  Google Scholar 

  27. Tang Y, Gao C, Xing M, Li Y, Zhu L, Wang D, Yang X, Liu L, Yao P (2012) Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 50:1194–1200

    Article  CAS  PubMed  Google Scholar 

  28. Lipkin M, Reddy B, Newmark H, Lamprecht SA (1999) Dietary factors in human colorectal cancer. Annu Rev Nutr 19:545–586

    Article  CAS  PubMed  Google Scholar 

  29. Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM (2011) Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels. Planta Med 77:1876–1882

    Article  CAS  PubMed  Google Scholar 

  30. Habtemariam S (2011) A-glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Nat Prod Commun 6:201–203

    CAS  PubMed  Google Scholar 

  31. Muhammad A, Guerrero-Analco JA, Martineau LC, Musallam L, Madiraju P, Nachar A, Saleem A, Haddad PS, Arnason JT (2012) Antidiabetic compounds from Sarracenia purpurea used traditionally by the Eeyou Istchee Cree First Nation. J Nat Prod 75:1284–1288

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Gao M, Wang J (2013) Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities. Cell Biol Int 37:1190–1196

    CAS  PubMed  Google Scholar 

  33. Li J, Adelakun TA, Wang S, Ruan J, Yang S, Li X, Zhang Y, Wang T (2017) Inhibitory effects of constituents from the aerial parts of Rosmarinus officinalis L. on triglyceride accumulation. Molecules 22:E110. doi:10.3390/molecules22010110

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Natural Science Foundation of China (NSFC 81673703) and the program for Changjiang Scholars and Innovative Research Team in University (PCSIRT IRT_14R41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Liu, L., Li, J. et al. Bioactive flavonoids from Flos Sophorae. J Nat Med 71, 513–522 (2017). https://doi.org/10.1007/s11418-017-1084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-017-1084-7

Keywords

Navigation