Skip to main content
Log in

Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure–activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure–activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v

    Article  CAS  PubMed  Google Scholar 

  2. Doggrell SA (2005) Rho-kinase inhibitors show promise in pulmonary hypertension. Expert Opin Investig Drugs 14:1157–9. doi:10.1517/13543784.14.9.1157

    PubMed  Google Scholar 

  3. Honjo M, Inatani M, Kido N et al (2001) Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol (Chicago, Ill 1960) 119:1171–1178

    Article  CAS  Google Scholar 

  4. Pan P, Shen M, Yu H et al (2013) Advances in the development of Rho-associated protein kinase (ROCK) inhibitors. Drug Discov Today 18:1323–1333. doi:10.1016/j.drudis.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  5. Rath N, Olson MF (2012) Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 13:900–8. doi:10.1038/embor.2012.127

    Article  PubMed  Google Scholar 

  6. Raad M, El Tal T, Gul R et al (2012) Neuroproteomics approach and neurosystems biology analysis: ROCK inhibitors as promising therapeutic targets in neurodegeneration and neurotrauma. Electrophoresis 33:3659–68. doi:10.1002/elps.201200470

    Article  PubMed  Google Scholar 

  7. Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67:545–54. doi:10.1002/cm.20472

    Article  Google Scholar 

  8. Leung T, Chen XQ, Manser E, Lim L (1996) The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16:5313–27

    Article  PubMed  Google Scholar 

  9. Reuter S, Kentrup D, Büssemaker E (2010) ROCK Inhibition – A New Therapeutic Avenue in Kidney Protection

  10. Feng Y, LoGrasso PV, Defert O, Li R (2016) Rho kinase (ROCK) Inhibitors and their therapeutic potential. J Med Chem 59:2269–300. doi:10.1021/acs.jmedchem.5b00683

    Article  PubMed  Google Scholar 

  11. Satoh K, Fukumoto Y, Shimokawa H (2011) Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol 301:H287–96. doi:10.1152/ajpheart.00327.2011

    Article  PubMed  Google Scholar 

  12. Shahin R, Alqtaishat S, Taha MO (2012) Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors. J Comput Aided Mol Des 26:249–66. doi:10.1007/s10822-011-9509-y

    Article  PubMed  Google Scholar 

  13. Tan H-B, Zhong Y-S, Cheng Y, Shen X (2011) Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. Int J Ophthalmol 4:652–7. doi:10.3980/j.issn.2222-3959.2011.06.16

    PubMed  Google Scholar 

  14. Fatmawati S, Kurashiki K, Takeno S et al (2009) The inhibitory effect on aldose reductase by an extract of Ganoderma lucidum. Phytother Res 23:28–32. doi:10.1002/ptr.2425

    Article  PubMed  Google Scholar 

  15. Hai-Bang T, Shimizu K (2015) Structure–activity relationship and inhibition pattern of reishi-derived (Ganoderma lingzhi) triterpenoids against angiotensin-converting enzyme. Phytochem Lett. doi:10.1016/j.phytol.2015.04.021

    Google Scholar 

  16. Kandabashi T, Shimokawa H, Miyata K et al (2000) Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation 101:1319–23

    Article  PubMed  Google Scholar 

  17. Zhu Q, Bang TH, Ohnuki K et al (2015) Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design. Sci Rep 5:13194. doi:10.1038/srep13194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xia Q, Zhang H, Sun X et al (2014) A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 19:17478–17535. doi:10.3390/molecules191117478

    Article  PubMed  Google Scholar 

  19. Amen YM, Zhu Q, Tran H-B et al (2016) Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells. J Nat Med 70:661–6. doi:10.1007/s11418-016-0976-2

    Article  PubMed  Google Scholar 

  20. Amen YM, Zhu Q, Afifi MS et al (2016) New cytotoxic lanostanoid triterpenes from Ganoderma lingzhi. Phytochem Lett. doi:10.1016/j.phytol.2016.07.024

    Google Scholar 

  21. Goswami SK, Pandre MK, Jamwal R et al (2012) Screening for Rho-kinase 2 inhibitory potential of Indian medicinal plants used in management of erectile dysfunction. J Ethnopharmacol 144:483–9. doi:10.1016/j.jep.2012.07.045

    Article  PubMed  Google Scholar 

  22. Lokesh D, Amitsankar D (2012) Evaluation of mechanism for antihypertensive action of Clerodendrum colebrookianum Walp., used by folklore healers in north-east India. J Ethnopharmacol 143:207–12. doi:10.1016/j.jep.2012.06.025

    Article  PubMed  Google Scholar 

  23. Dufau I, Lazzari A, Samson A et al (2008) Optimization of a homogeneous assay for kinase inhibitors in plant extracts. Assay Drug Dev Technol 6:673–682. doi:10.1089/adt.2008.143

    Article  CAS  PubMed  Google Scholar 

  24. Dong M, Yan BP, Liao JK et al (2010) Rho-kinase inhibition: a novel therapeutic target for the treatment of cardiovascular diseases. Drug Discov Today 15:622–9. doi:10.1016/j.drudis.2010.06.011

    Article  PubMed  Google Scholar 

  25. Jacobs M, Hayakawa K, Swenson L et al (2006) The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J Biol Chem 281:260–8. doi:10.1074/jbc.M508847200

    Article  PubMed  Google Scholar 

  26. Yamaguchi H, Miwa Y, Kasa M et al (2006) Structural basis for induced-fit binding of Rho-kinase to the inhibitor Y-27632. J Biochem 140:305–11. doi:10.1093/jb/mvj172

    Article  PubMed  Google Scholar 

  27. Hai-Bang T, Shimizu K (2014) Potent angiotensin-converting enzyme inhibitory tripeptides identified by a computer-based approach. J Mol Graph Model 53:206–11. doi:10.1016/j.jmgm.2014.08.002

    Article  PubMed  Google Scholar 

  28. Mehrbod P, Omar AR, Hair-Bejo M et al (2014) Mechanisms of action and efficacy of statins against influenza. Biomed Res Int 2014:872370. doi:10.1155/2014/872370

    Article  PubMed  PubMed Central  Google Scholar 

  29. Akihisa T, Nakamura Y, Tagata M et al (2007) Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem Biodivers 4:224–31. doi:10.1002/cbdv.200790027

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Egyptian Government is acknowledged for the fellowship support to Yhiya Amen. We appreciate the technical assistance from The Research Support Center, Research Center for Human Disease Modeling, Kyushu University Graduate School of Medical Sciences. This work was supported by KAKENHI Grant Number 26660147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniyoshi Shimizu.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amen, Y., Zhu, Q., Tran, HB. et al. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors. J Nat Med 71, 380–388 (2017). https://doi.org/10.1007/s11418-016-1069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-016-1069-y

Keywords

Navigation