Skip to main content
Log in

Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper, the authors establish a generalized maximum principle for pseudo-Hermitian manifolds. As corollaries, Omori-Yau type maximum principles for pseudo-Hermitian manifolds are deduced. Moreover, they prove that the stochastic completeness for the heat semigroup generated by the sub-Laplacian is equivalent to the validity of a weak form of the generalized maximum principles. Finally, they give some applications of these generalized maximum principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barletta, E., On the pseudohermitian sectional curvature of a strictly pseudoconvex CR manifold, Diff. Geom. Appl., 25, 2007, 612–631.

    Article  MATH  Google Scholar 

  2. Baudoin, F. and Wang, J., Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds, Potential Anal., 40, 2014, 163–193.

    Article  MATH  Google Scholar 

  3. Borbély, A., A remark of the Omori-Yau maximum principle, Kuwait Journal of Science and Engineering, 39(2), 2012, 45–56.

    Google Scholar 

  4. Boyer, C. P. and Galicki, K., Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.

    MATH  Google Scholar 

  5. Calabi, E., An extension of E. Hopf maximum principles, Duck Math. J., 25, 1957, 45–56.

    MATH  Google Scholar 

  6. Chen, Q. and Xin, Y., A generalized maximum principle and its applications in geometry, Amer. J. Math., 114, 1992, 355–366.

    Article  MATH  Google Scholar 

  7. Cheng, S. Y. and Yau, S. T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28, 1975, 333–354.

    Article  MATH  Google Scholar 

  8. Chong, T., Dong, Y., Ren, Y. and Zhang, W., Pseudo-harmonic maps from complete noncompact pseudo-Hermitian manifolds to regular ball, J. Geom. Anal., 30(4), 2020, 3512–3541.

    Article  MATH  Google Scholar 

  9. Chow, W. L., Über systeme von linearen partiellen differentialgleichungen erster Ordnung, Math. Ann., 117, 1939, 98–105.

    MATH  Google Scholar 

  10. Dodziuk, J., Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J., 32(5), 1983, 703–716.

    Article  MATH  Google Scholar 

  11. Dong, Y., Ren, Y. and Yu, W., Schwarz type lemmas for pseudo-Hermitian manifolds, J. Geom. Anal., 31(3), 2020, 3161–3195.

    Article  MATH  Google Scholar 

  12. Dong, Y., Ren, Y. and Yu, W., Prescribed Webster scalar curvatures on compact pseudo-Hermitian manifolds, J. Geom. Anal., 32(5), 2022, 151.

    Article  MATH  Google Scholar 

  13. Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics 246, Birkhäuser, Boston, Basel, Berlin, 2006.

    MATH  Google Scholar 

  14. Folland, G. B. and Stein, E. M., Estimates for the \({\overline \partial _b} - {\rm{complex}}\) and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27, 1974, 429–522.

    Article  Google Scholar 

  15. Grigor’yan, A., Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc., 36, 1999, 135–249.

    Article  MATH  Google Scholar 

  16. Grigor’yan, A., Heat Kernel and Analysis on Manifolds, Studies in Adv. Math., Amer. Math. Soc., International Press, 2009.

  17. Hömander, L., Hypoelliptic second differential equations, Acta Math., 119(1), 1967, 147–171.

    Article  Google Scholar 

  18. Hong, K. and Sung, C., An Omori-Yau maximum principle for semi-elliptic operators and Liouville-type theorem, Diff. Geom. Appl., 31, 2013, 533–539.

    Article  MATH  Google Scholar 

  19. Jost, J. and Xu, C. J., Subelliptic harmonic maps, Trans. Amer. Math. Soc., 350(11), 1998, 4633–4649.

    Article  MATH  Google Scholar 

  20. Nagel, A., Stein, E. M. and Wainger, S., Balls and metrics defined by vector fields I: Basic properties, Acta Math., 155(1), 1985, 103–147.

    Article  MATH  Google Scholar 

  21. Ni, W. M., On the elliptic equation \(\Delta u + K\left( x \right){u^{{{n + 2} \over {n - 2}}}} = 0\), its generalizations and applications to geometry, Indiana Univ. Math. J., 31, 1982, 493–539.

    Article  Google Scholar 

  22. Omori, H., Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19, 1967, 205–214.

    Article  MATH  Google Scholar 

  23. Pigola, S., Rigoli, M. and Setti, A. G., A remark on the maximum principle and stochastic completeness, Proc. Amer. math. soc., 131(4), 2003, 1283–1288.

    Article  MATH  Google Scholar 

  24. Pigola, S., Rigoli, M. and Setti, A. G., Maximum principles on Riemannian manifolds and applications, Memoirs of Amer. Math. Soc., 174(822), 2005, x+99 pp

  25. Rashevsky, P. K., Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math, 2, 1938, 83–94.

    Google Scholar 

  26. Ratto, A., Rigoli, M. and Setti, A. G., On the Omori-Yau maximal principle and its applications to differential equations and geometry, J. Func. Anal., 134, 1995, 486–510.

    Article  MATH  Google Scholar 

  27. Ratto, A., Rigoli, M. and Veron, L., Scalar curvature and conformal deformation of hyperbolic space, J. Func. Anal., 121, 1994, 15–77.

    Article  MATH  Google Scholar 

  28. Ren, Y., Yang, G. and Chong, T., Liouville theorem for pseudoharmonic maps from Sasakian manifolds, J. Geom. Phys., 81, 2014, 47–61.

    Article  MATH  Google Scholar 

  29. Rothschild, L. P. and Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 1976, 247–320.

    Article  MATH  Google Scholar 

  30. Sattinger, D. H., Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, 309, Springer-Verlag, Heidelberg, 1973.

    MATH  Google Scholar 

  31. Strichartz, R. S., Sub-Riemannian geometry, J. Diff. Geom., 24, 1986, 221–263.

    MATH  Google Scholar 

  32. Sung, C., Liouville-type theorems and applications to geometry on complete Riemannain manifolds, J. Geom. Anal., 23, 2013, 96–105.

    Article  MATH  Google Scholar 

  33. Takegoshi, K., A volume estimate for strong subharmonicity and maximum principle on complete Riemannian manifolds, Nagoya Math. J., 151, 1998, 25–36.

    Article  MATH  Google Scholar 

  34. Tanaka, N., A Differential Geometric Study on Strongly Pseudo-convex Manifolds, Kinokuniya Book-Store, Tokyo, 1975.

    MATH  Google Scholar 

  35. Webster, S. M., Pseudohermitian structures on a real hypersurface, J. Diff. Geom., 13(1), 1978, 25–41.

    MATH  Google Scholar 

  36. Yau, S. T., Harmonic function on complete Riemannian manifolds, Comm. Pure Appl. Math., 28, 1975, 201–228.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weike Yu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11771087, 12171091), LMNS, Fudan, Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 2022ZB281) and the Fundamental Research Funds for the Central Universities (No. 30922010410).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Yu, W. Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds. Chin. Ann. Math. Ser. B 43, 949–976 (2022). https://doi.org/10.1007/s11401-022-0372-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-022-0372-z

Keywords

2000 MR Subject Classification

Navigation